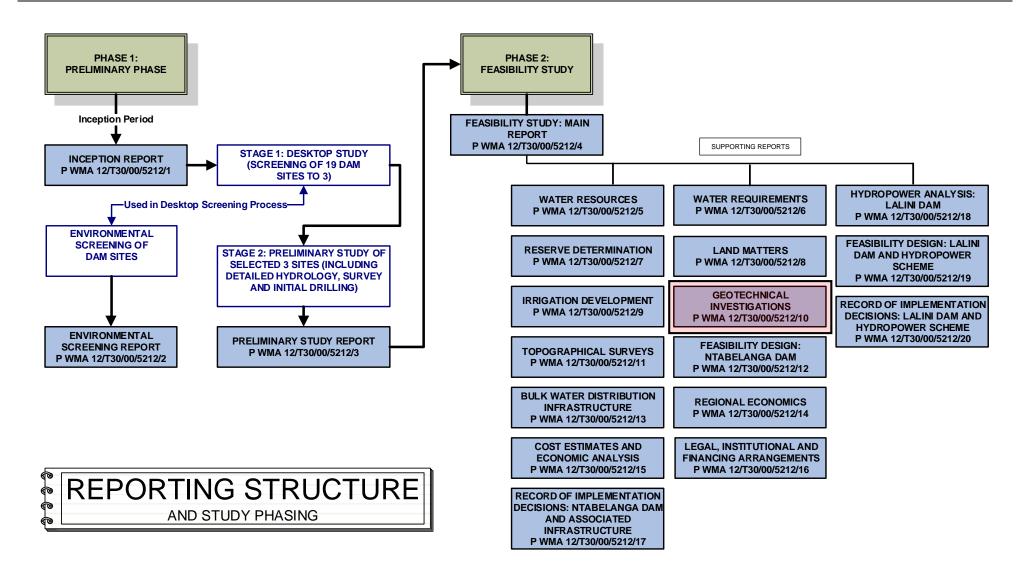

DIRECTORATE: OPTIONS ANALYSIS

FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT

GEOTECHNICAL INVESTIGATIONS:

LALINI DAM AND HYDROPOWER SCHEME



OCTOBER 2014

LIST OF REPORTS

REPORT TITLE	DWS REPORT NUMBER
Inception Report	P WMA 12/T30/00/5212/1
Environmental Screening	P WMA 12/T30/00/5212/2
Preliminary Study	P WMA 12/T30/00/5212/3
Feasibility Study: Main Report	
Volume 1: Report	P WMA 12/T30/00/5212/4
Volume 2: Book of Drawings	
FEASIBILITY STUDY: SUPPORTING REPORTS:	
Water Resources	P WMA 12/T30/00/5212/5
Water Requirements	P WMA 12/T30/00/5212/6
Reserve Determination	
Volume 1: River	P WMA 12/T30/00/5212/7
Volume 2: Estuary: Report	F WWA 12/130/00/3212/1
Volume 3 :Estuary: Appendices	
Land Matters	P WMA 12/T30/00/5212/8
Irrigation Development	P WMA 12/T30/00/5212/9
Geotechnical Investigations	
Volume 1: Ntabelanga, Somabadi and Thabeng Dam Sites:	
Report	
Volume 2: Ntabelanga, Somabadi and Thabeng Dam Sites:	P WMA 12/T30/00/5212/10
Appendices Volume 3: Lalini Dam and Hydropower Scheme: Report	
Volume 4: Lalini Dam and Hydropower Scheme:	
Appendices	
Topographical Surveys	P WMA 12/T30/00/5212/11
Feasibility Design: Ntabelanga Dam	P WMA 12/T30/00/5212/12
Bulk Water Distribution Infrastructure	P WMA 12/T30/00/5212/13
Regional Economics	P WMA 12/T30/00/5212/14
Cost Estimates and Economic Analysis	P WMA 12/T30/00/5212/15
Legal, Institutional and Financing Arrangements	P WMA 12/T30/00/5212/16
Record of Implementation Decisions: Ntabelanga Dam and Associated Infrastructure	P WMA 12/T30/00/5212/17
Hydropower Analysis: Lalini Dam	P WMA 12/T30/00/5212/18
Feasibility Design: Lalini Dam and Hydropower Scheme	P WMA 12/T30/00/5212/19
Record of Implementation Decisions: Lalini Dam and Hydropower Scheme	P WMA 12/T30/00/5212/20

REFERENCE

This report is to be referred to in bibliographies as:

Department of Water and Sanitation (2014). Feasibility Study for the Mzimvubu Water Project: Geotechnical Investigations: Lalini Dam and Hydropower Scheme: Appendices

DWS Report No: P WMA 12/T30/00/5212/10

Prepared for: Directorate - Options Analysis

Prepared by: Jeffares & Green (Pty) Ltd, P O Box 794, Hilton, 3245

Tel: 033 343 6700, Fax: 033 343 6701

Contact: Mr A Pepperell Email: pepperella@jgi.co.za

Note on Departmental Name Change:

In 2014, the Department of Water Affairs changed its name to the Department of Water and Sanitation, which happened during the course of this study. In some cases this was after some of the study reports had been finalized. The reader should therefore kindly note that references to the Department of Water Affairs and the Department of Water and Sanitation herein should be considered to be one and the same.

Note on Spelling of Laleni:

The settlement named Laleni on maps issued by the Surveyor General is locally known as Lalini and both names therefore refer to the same settlement.

VOLUME 4

APPENDICES

APPENDIX A: SITE PLANS

APPENDIX B: DAM BOREHOLE LOGS, PHOTOPGRAPHS AND

WATER PRESSURE TESTS

APPENDIX C: QUARRY BOREHOLE LOGS AND PHOTOGRAPHS

APPENDIX D: TUNNEL BOREHOLE LOGS, PHOTOGRAPHS AND

WATER PRESSURE TESTS

APPENDIX E: LABORATORY TEST RESULTS

APPENDIX F: TRIAL PIT LOGS

APPENDIX A SITE PLANS

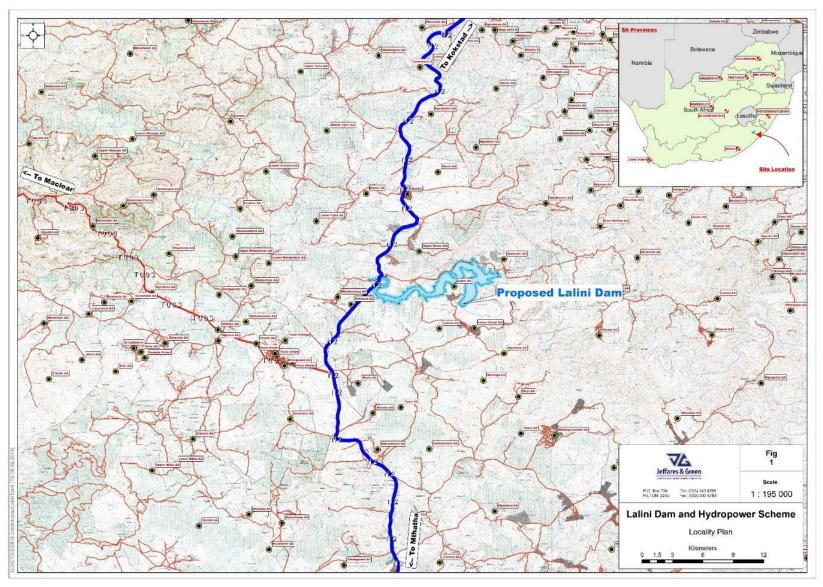


Fig A-1: Locality Plan

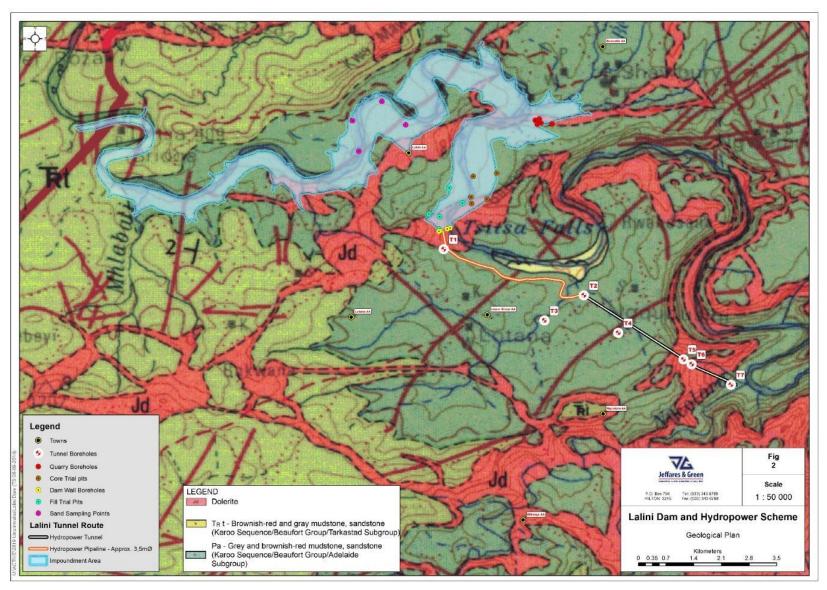


Fig A-2: Geological Plan

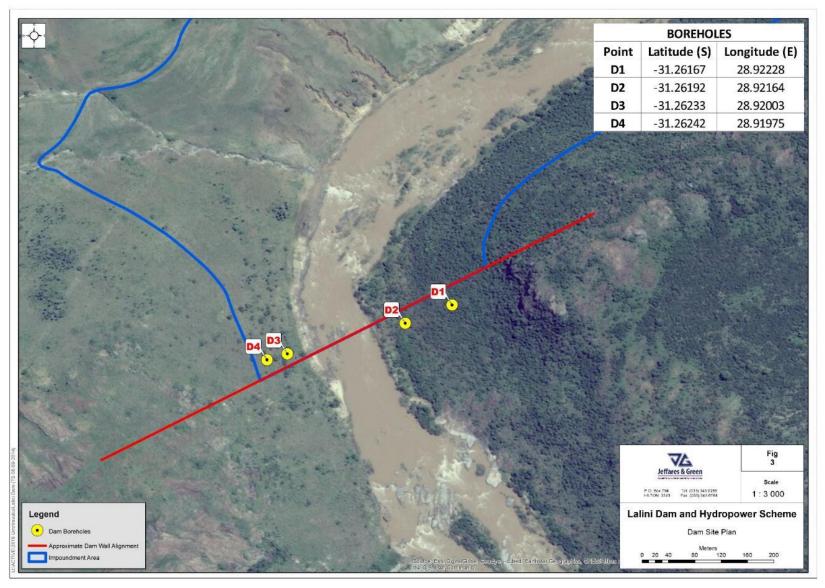


Fig A-3: Dam Site Plan

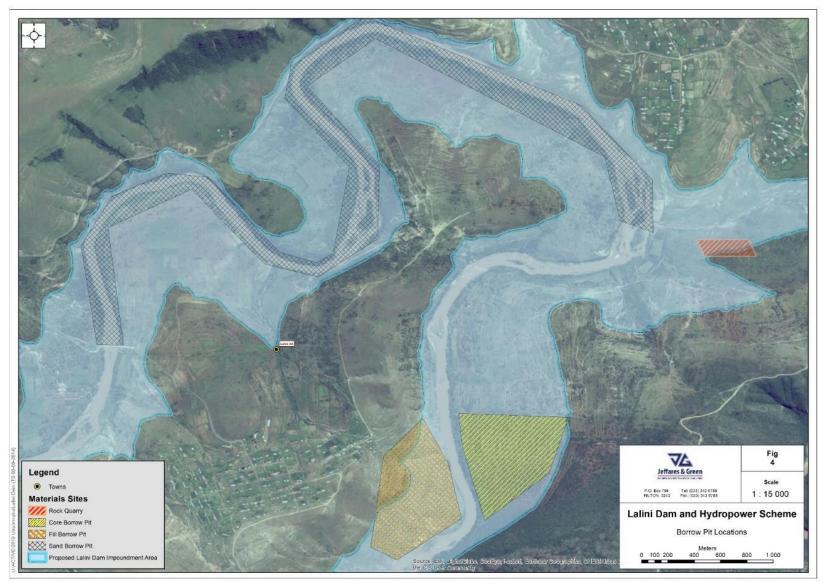


Fig A-4: Borrow Pit Locations

OCTOBER 2014

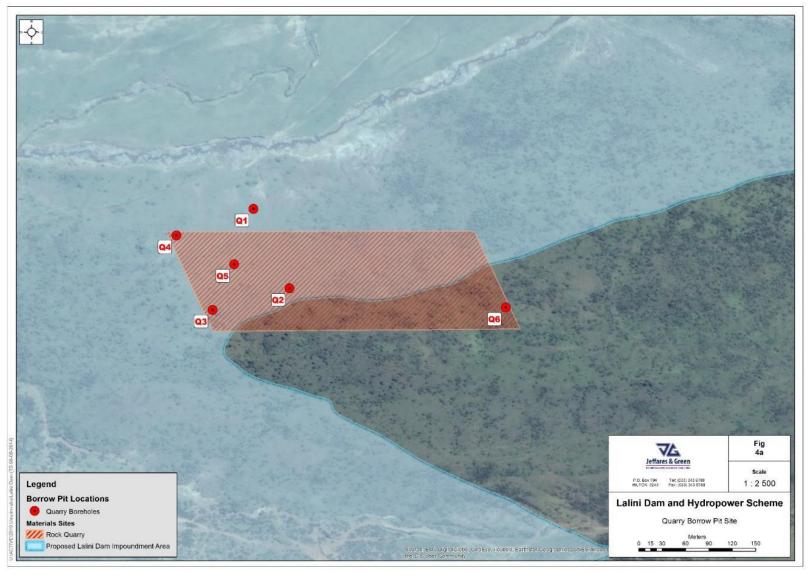


Fig A-4a: Quarry Borrow Pit Site

OCTOBER 2014

Fig A-4b: Core Borrow Pit Site

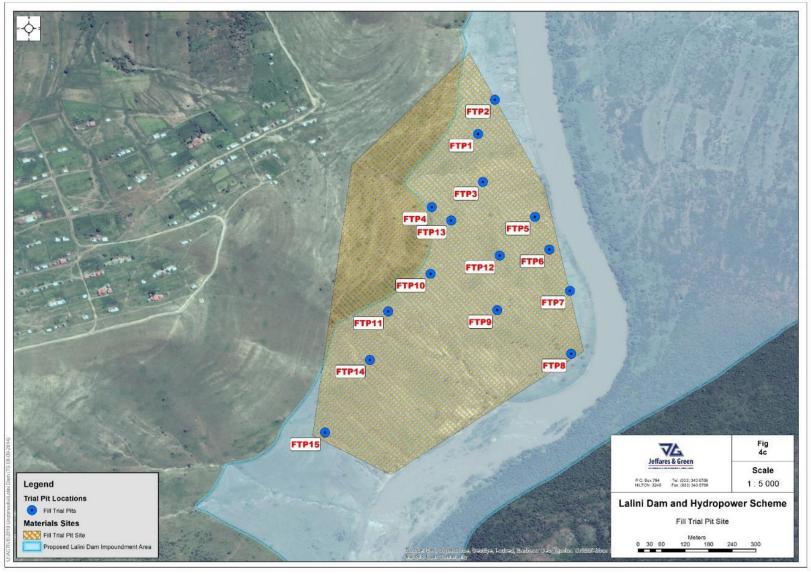


Fig A-4c: Fit Trial Pit Site

Fig A-4d: Sand Borrow Pit Site

Fig A-5: Pipeline Test Pits

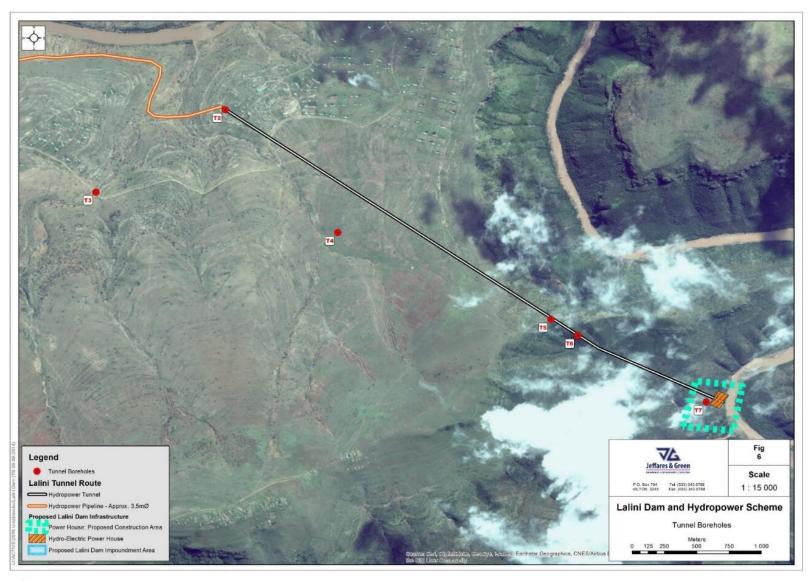


Fig A-6: Tunnel Boreholes

OCTOBER 2014

APPENDIX B

DAM BOREHOLE LOGS, PHOTOPGRAPHS AND WATER PRESSURE TESTS

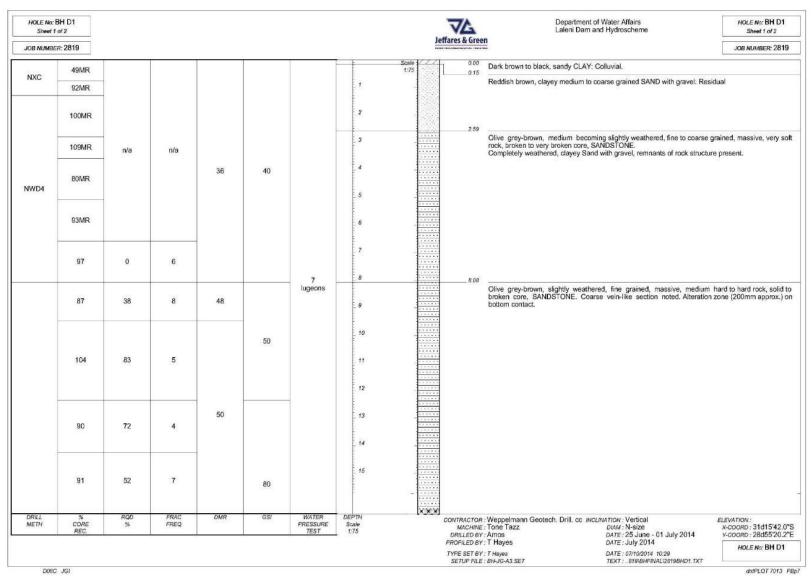


Fig B-1.1: Borehole D1 - Log

OCTOBER 2014

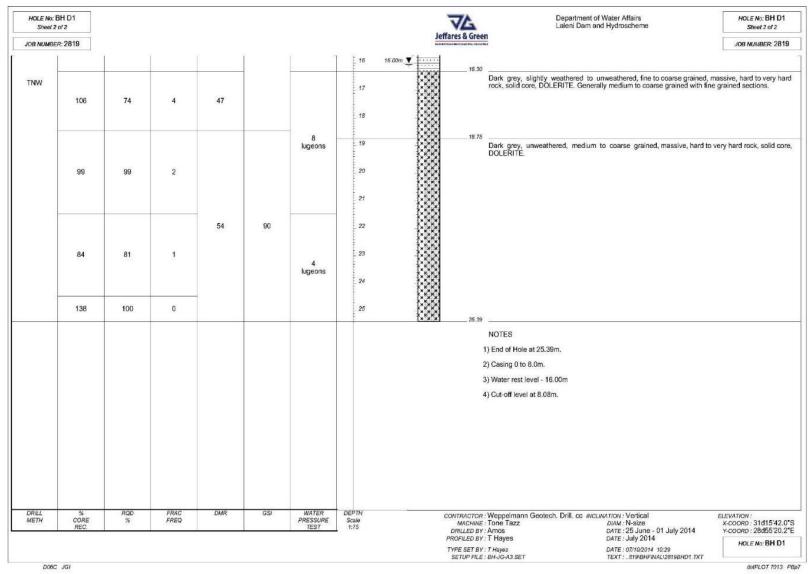


Fig B-1.2: Borehole D1 - Log

Fig B-2: Borehole D1 – Box 1 to 4 Dry

Guage Pressure (Bars) A	Pressure due to Guage Height (Bars) B	Pressure due to water height above water table (Bars) C	Test Pressure (Bars) A+B+C	Duration (Seconds)	Injected Volume (I)	Top Level	Bottom Level	Length of hole	time in minutes	litres / metre /minute	Lugeon Units
	!	:		WP	T 10 – 16.3m	1		<u>:</u>			
1.5	0	0	1.5	600	82	10	16.3	6.3	10	1.3016	9
2.6	0	0	2.6	600	120	10	16.3	6.3	10	1.9048	7
3.75	0	0	3.75	600	122.9	10	16.3	6.3	10	1.9508	5
2.6	0	0	2.6	600	125.2	10	16.3	6.3	10	1.9873	8
1.5	0	0	1.5	600	70	10	16.3	6.3	10	1.1111	7
	<u>:</u>			WPT	16.3- 21.46	n		-			
1.95	0	0	1.95	600	83.5	16.3	21.46	5.16	10	1.6182	8
3.4	0	0	3.4	600	96.4	16.3	21.46	5.16	10	1.8682	5
4.85	0	0	4.85	600	183.7	16.3	21.46	5.16	10	3.5601	7
3.4	0	0	3.4	600	154.8	16.3	21.46	5.16	10	3	9
1.95	0	0	1.95	600	90.5	16.3	21.46	5.16	10	1.7539	9
	1			WPT	21.46 – 25.39	9m					
2.25	0	0	2.25	600	64.6	21.46	25.39	3.93	10	1.6438	7
3.95	0	0	3.95	600	76.3	21.46	25.39	3.93	10	1.9415	5
5.65	0	0	5.65	600	98.2	21.46	25.39	3.93	10	2.4987	4
3.95	0	0	3.95	600	73.6	21.46	25.39	3.93	10	1.8728	5
2.25	0	0	2.25	600	52.4	21.46	25.39	3.93	10	1.3333	6
Mzimvubu	Input Data ' '										
Borehole No		D1		Height of guag	je above top	of embankme	nt (m)		0		

Table B-1: Water Pressure Tests – Borehole D1

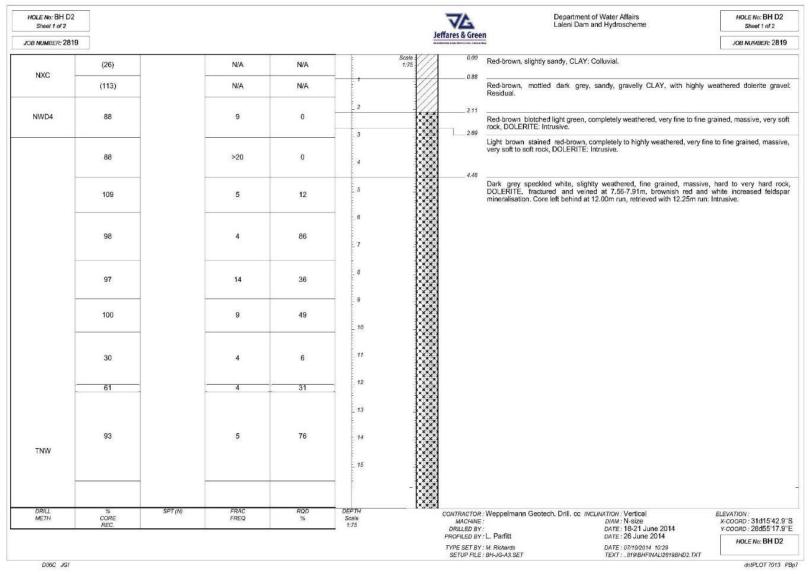


Fig B-3.1: Borehole D2 - Log

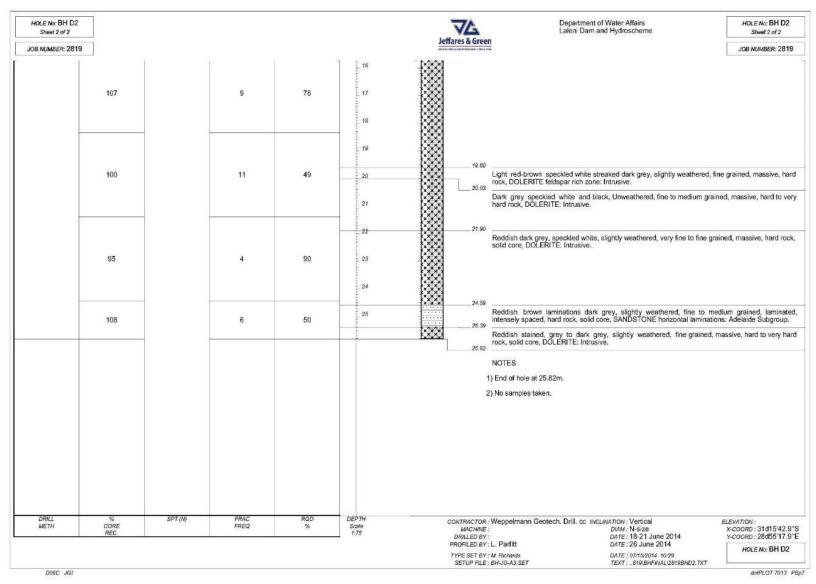


Fig B-3.2: Borehole D2 - Log

OCTOBER 2014



Fig B-4: Borehole D2 – Box 1 to 4 Dry

Guage Pressure (Bars) A	Pressure due to Guage Height (Bars) B	Pressure due to water height above water table (Bars) C	Test Pressure (Bars) A+B+C	Duration (Seconds)	Injected Volume (I)	Top Level	Bottom Level	Length of hole	time in minutes	litres / metre /minute	Lugeon Units			
				WP'	T 7.0 – 12.0n	n								
1.1	0	0	1.1	600	6	7	12	5	10	0.12	1			
1.9	0	0	1.9	600	11	7	12	5	10	0.22	1			
2	0	0	2	600	25	7	12	5	10	0.5	3			
1.9	0	0	1.9	600	116.2	7	12	5	10	2.324	12			
1.1	0	0	1.1	600	124.8	7	12	5	10	2.496	23			
	-	-		WPT	12.0- 18.35ı	m		-	-	-				
1.65	0	0	1.65	600	9.1	12	18.35	6.35	10	0.1433	1			
2.85	0	0	2.85	600	48.2	12	18.35	6.35	10	0.7591	3			
4.05	0	0	4.05	600	42.4	12	18.35	6.35	10	0.6677	2			
2.85	0	0	2.85	600	35.1	12	18.35	6.35	10	0.5528	2			
1.65	0	0	1.65	600	25.6	12	18.35	6.35	10	0.4031	2			
	-	-		WPT	18.5 – 25.82	m		-	-	-				
1.4	0	0	1.4	600	114.8	18.5	25.82	7.32	10	1.5683	11			
	0	0	0	600		18.5	25.82	7.32	10	0	0			
	0	0	0	600		18.5	25.82	7.32	10	0	0			
	0	0	0	600		18.5	25.82	7.32	10	0	0			
	0	0	0	600		18.5	25.82	7.32	10	0	0			
Mzimvubu	-1		Innest Date	Depth from top	o of embankn	nent to water	table (m)	•	0					
Borehole No		D2	input Data	Height of guag	ge above top	of embankme	Input Data							

Table B-2: Water Pressure Tests – Borehole D2

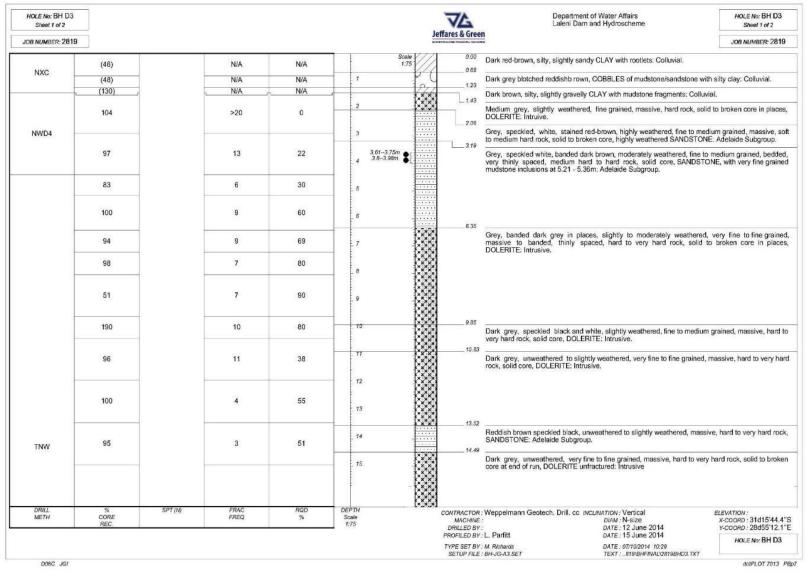


Fig B-5.1: Borehole D3 - Log

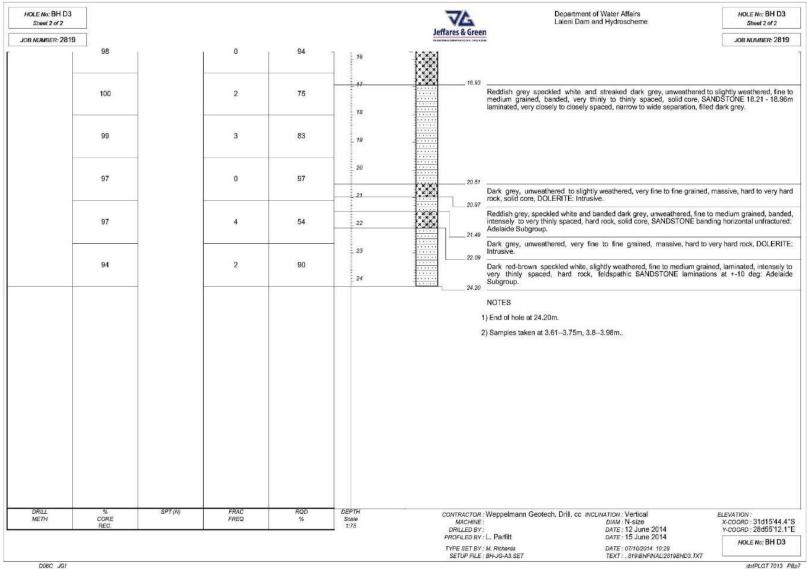


Fig B-5.2: Borehole D3 - Log

Fig B-6: Borehole D3 – Box 1 to 4 Dry

Guage Pressure (Bars) A	Pressure due to Guage Height (Bars) B	Pressure due to water height above water table (Bars) C	Test Pressure (Bars) A+B+C	Duration (Seconds)	Injected Volume (I)	Top Level	Bottom Level	Length of hole	time in minutes	litres / metre /minute	Lugeon Units
	"			WP.	T 3.5 – 7.22n	n		-	-	-	-
0.3	0	0	0.3	600	62	3.5	7.22	3.72	10	1.6667	56
0.55	0	0	0.55	600	49	3.5	7.22	3.72	10	1.3172	24
0.8	0	0	0.8	600	51.5	3.5	7.22	3.72	10	1.3844	17
0.55	0	0	0.55	600	43.4	3.5	7.22	3.72	10	1.1667	21
0.3	0	0	0.3	600	34	3.5	7.22	3.72	10	0.914	30
	-	-		WP.	T 7.5 – 13.5n	n					
1.2	0	0	1.2	600	90.9	7.5	13.5	6	10	1.515	13
2.15	0	0	2.15	600	92.4	7.5	13.5	6	10	1.54	7
3.05	0	0	3.05	600	83.2	7.5	13.5	6	10	1.3867	5
2.15	0	0	2.15	600	58.2	7.5	13.5	6	10	0.97	5
1.2	0	0	1.2	600	9.4	7.5	13.5	6	10	0.1567	1
		-		WPT	13.5 – 24.21	m					
2.15	0	0	2.15	600	0	13.5	24.2	10.7	10	0	0
3.8	0	0	3.8	600	88.1	13.5	24.2	10.7	10	0.8234	2
5.45	0	0	5.45	600	53.3	13.5	24.2	10.7	10	0.4981	1
3.8	0	0	3.8	600	86.7	13.5	24.2	10.7	10	0.8103	2
2.15	0	0	2.15	600	11.5	13.5	24.2	10.7	10	0.1075	0
Mzimvubu	"		Innut Date	Depth from top	of embankn	nent to water	table (m)		0		
Borehole No	Input Data										

Table B-3: Water Pressure Tests – Borehole D3

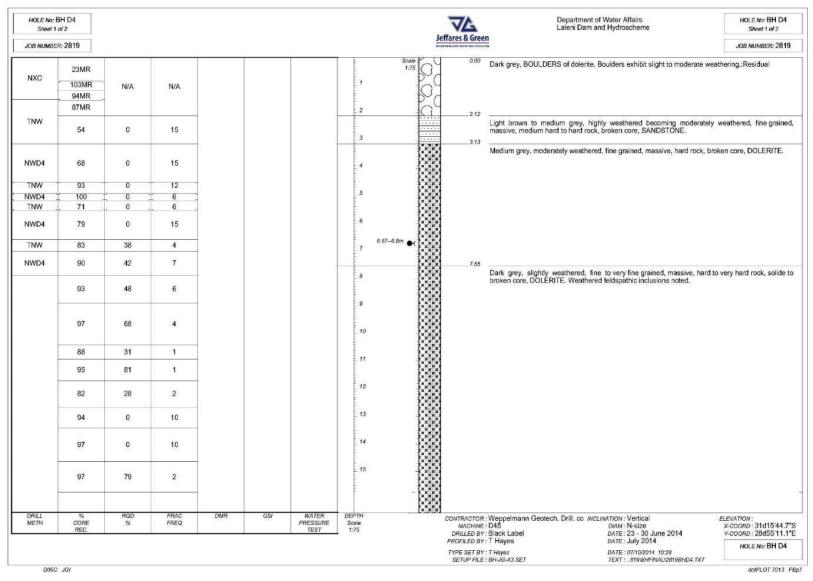


Fig B-7.1: Borehole D4 - Log

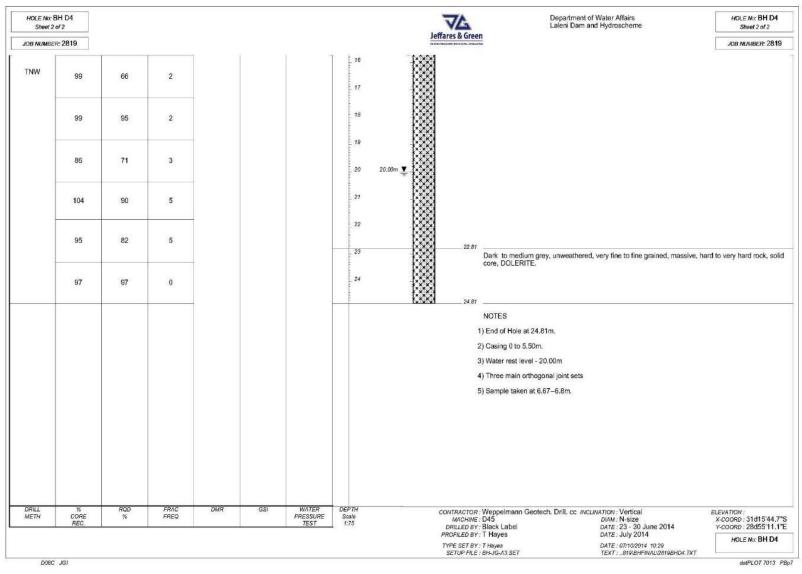


Fig B-7.2: Borehole D4 - Log



Fig B-8: Borehole D4 – Box 1 to 4 Dry

Guage Pressure (Bars) A	Pressure due to Guage Height (Bars) B	Pressure due to water height above water table (Bars) C	Test Pressure (Bars) A+B+C	Duration (Seconds)	Injected Volume (I)	Top Level	Bottom Level	Length of hole	time in minutes	litres / metre /minute	Lugeon Units
	7			WPT	15.0 – 20.5	m					
1.35	0	0	1.35	600	148.4	15	20.5	5.5	10	2.6982	20
2.4	0	0	2.4	600	169	15	20.5	5.5	10	3.0727	13
2.4	0	0	2.4	600	92.8	15	20.5	5.5	10	1.6873	7
2.4	0	0	2.4	600		15	20.5	5.5	10	0	0
1.35	0	0	1.35	600	150.7	15	20.5	5.5	10	2.74	20
	-	-	-	WPT	20.5 – 24.81	m		_			-
1.5	0	0	1.5	600	194.5	20.5	24.81	4.31	10	4.5128	30
	0	0	0	600		20.5	24.81	4.31	10	0	0
	0	0	0	600		20.5	24.81	4.31	10	0	0
	0	0	0	600		20.5	24.81	4.31	10	0	0
	0	0	0	600		20.5	24.81	4.31	10	0	0
Mzimvubu			Innut Data	Depth from top	o of embankn	nent to water	table (m)		0		
Borehole No		D4	Input Data	Height of guage above top of embankment (m)					0		

Table B-4: Water Pressure Tests – Borehole D4

APPENDIX C

QUARRY BOREHOLE LOGS AND PHOTOGRAPHS

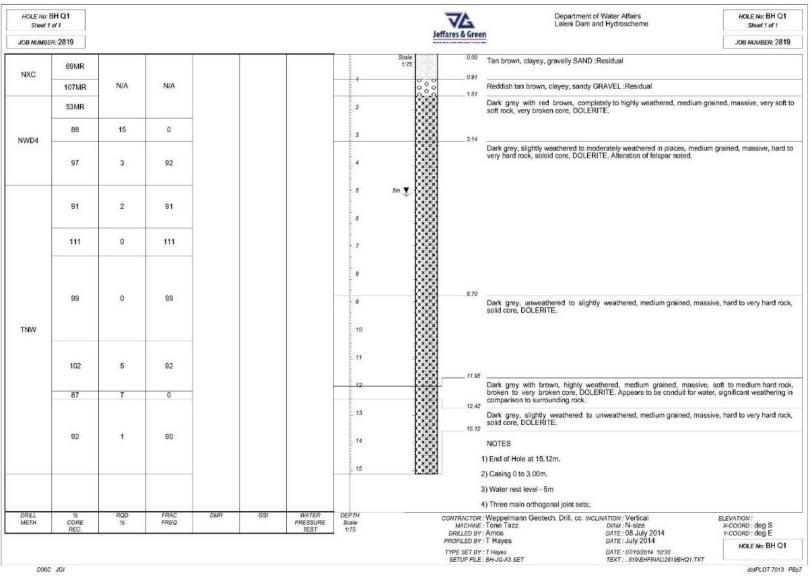


Fig C-1: Borehole Quarry 1 - Log

C - 2

Fig C-2: Borehole Quarry 1 – Box 1 to 3 Dry

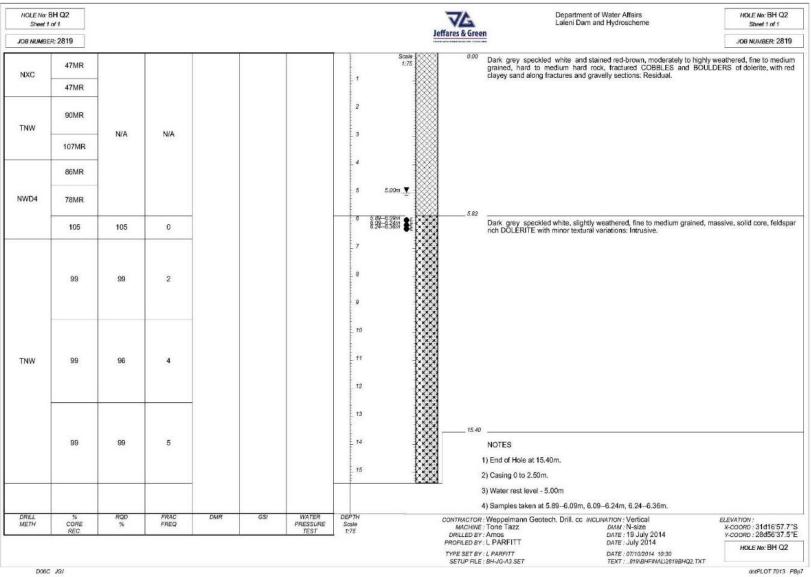


Fig C-3: Borehole Quarry 2 - Log

Fig C-4: Borehole Quarry 2 – Box 1 to 3 Dry

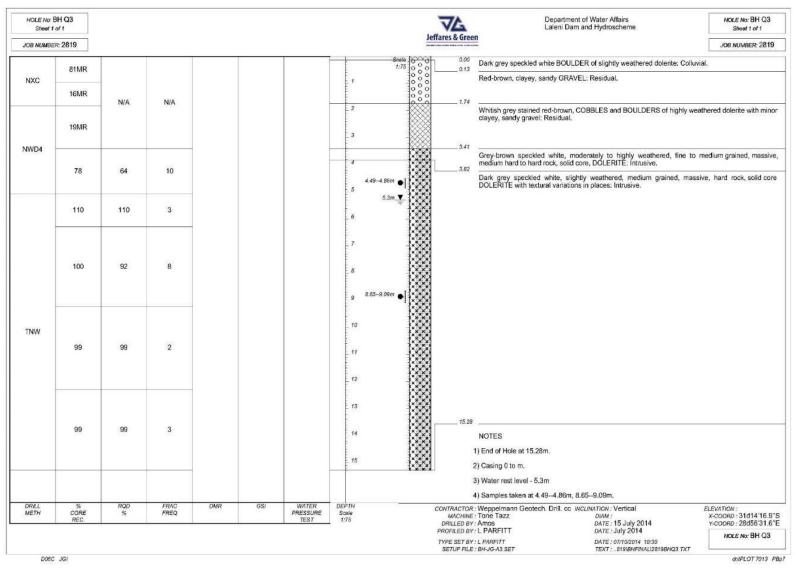


Fig C-5: Borehole Quarry 3 - Log

Fig C-6: Borehole Quarry 3 – Box 1 to 2 Dry

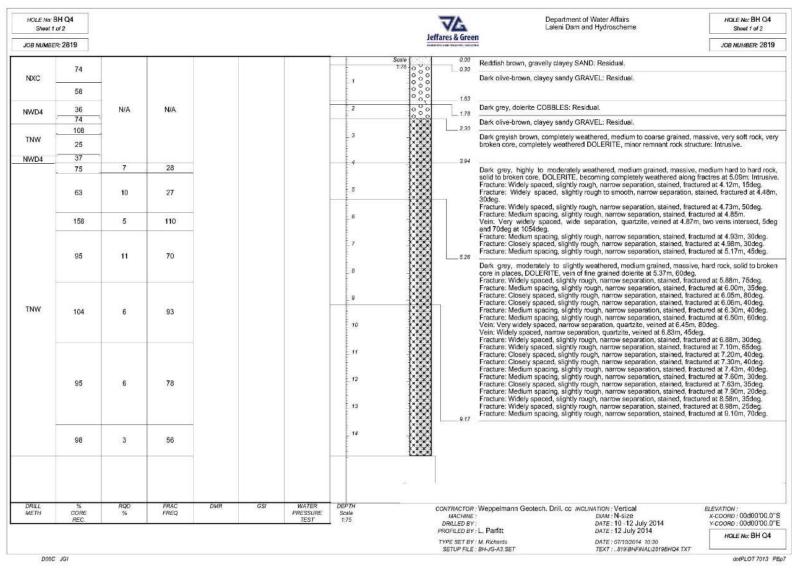


Fig C-7-1: Borehole Quarry 4 - Log

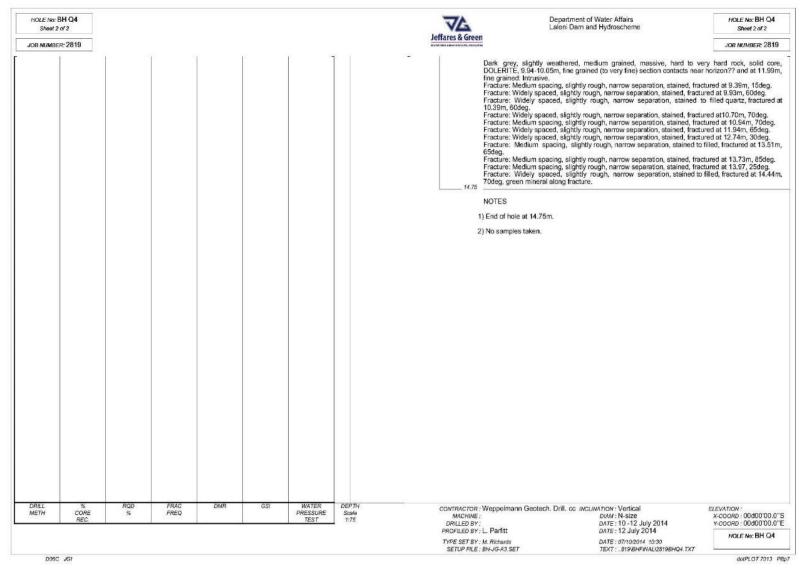


Fig C-7-2: Borehole Quarry 4 - Log

Fig C-8: Borehole Quarry 4 – Box 1 to 2 Dry

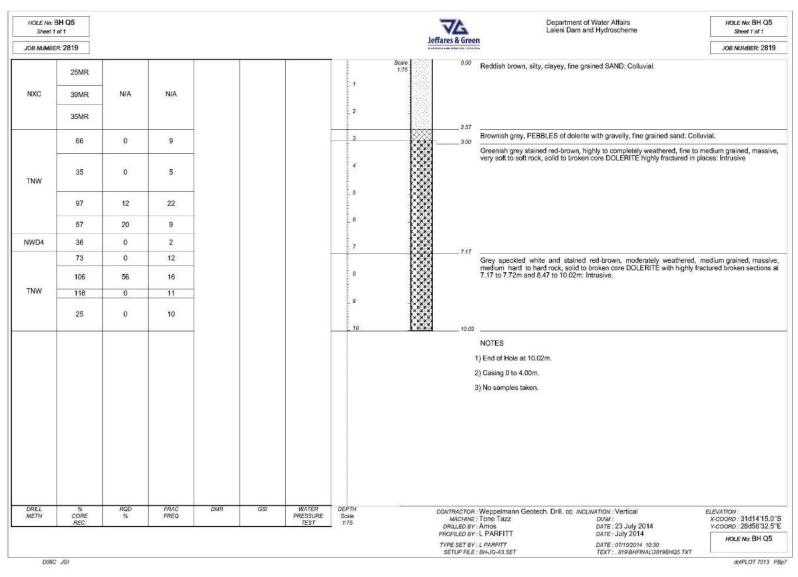


Fig C-8: Borehole Quarry 5 - Log

Fig C-9: Borehole Quarry 5 – Box 1 Dry

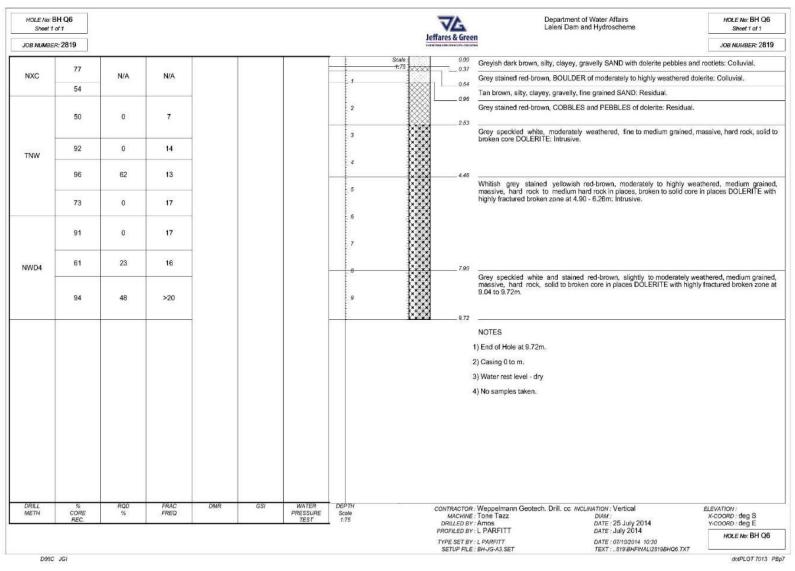


Fig C-10: Borehole Quarry 6 - Log

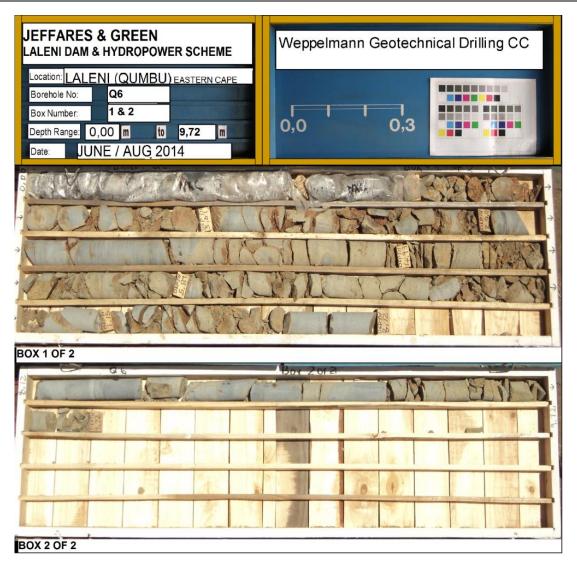


Fig C-11: Borehole Quarry 6 – Box 1 and 2 Dry

APPENDIX D

TUNNEL BOREHOLE LOGS, PHOTOGRAPHS AND WATER PRESSURE TESTS

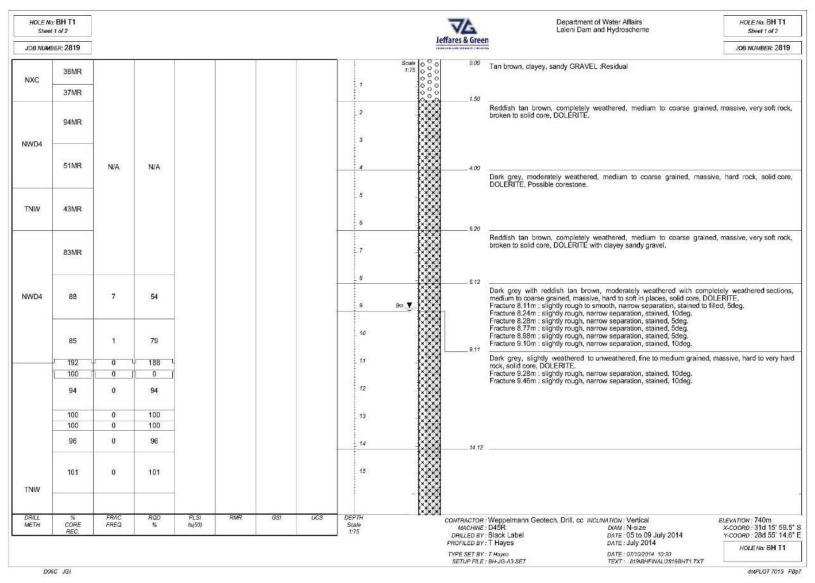


Fig D-1.1: Borehole Tunnel 1 - Log

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

D - 2

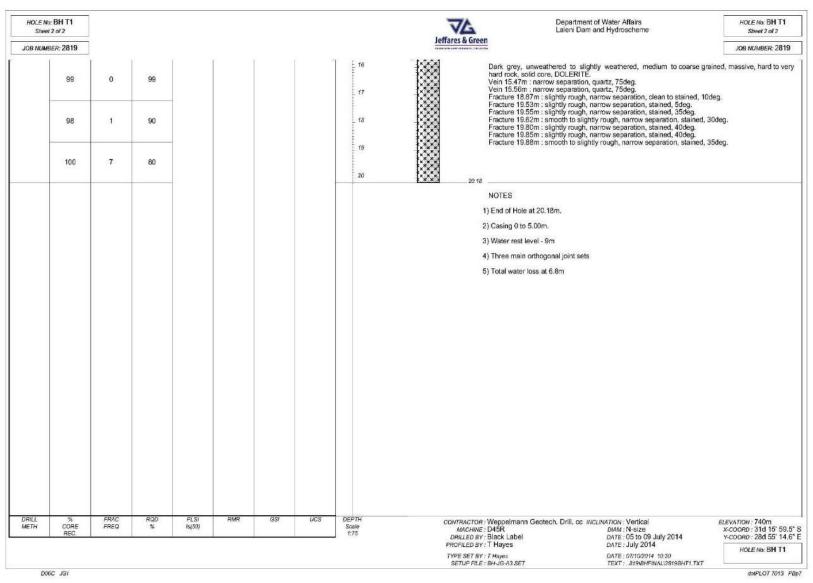


Fig D-1.2: Borehole Tunnel 1 - Log

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

D - 3

Fig D-2: Borehole Tunnel 1 – Box 1 to 3

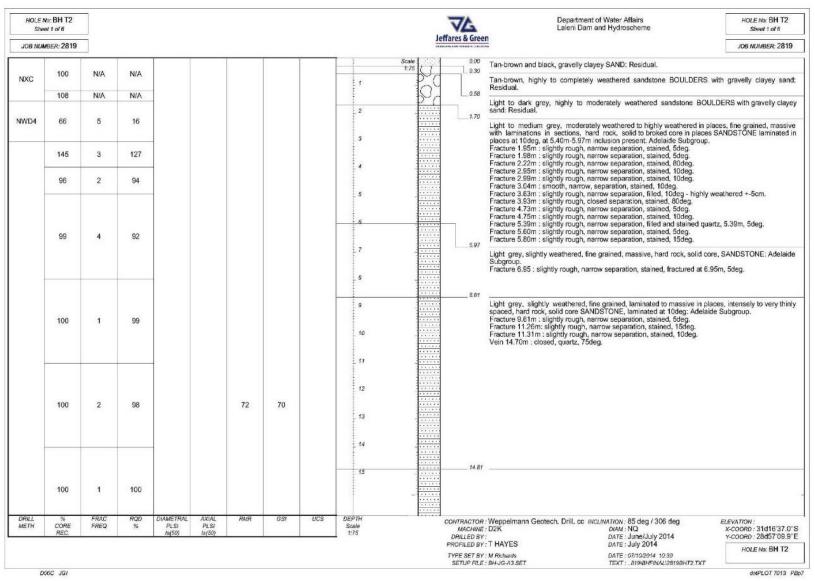


Fig D-3.1: Borehole Tunnel 2 - Log

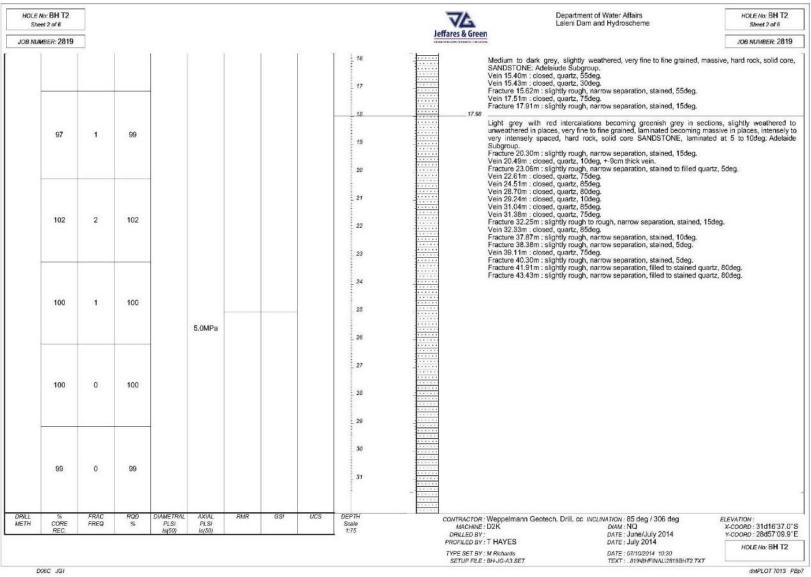


Fig D-3.2: Borehole Tunnel 2 - Log

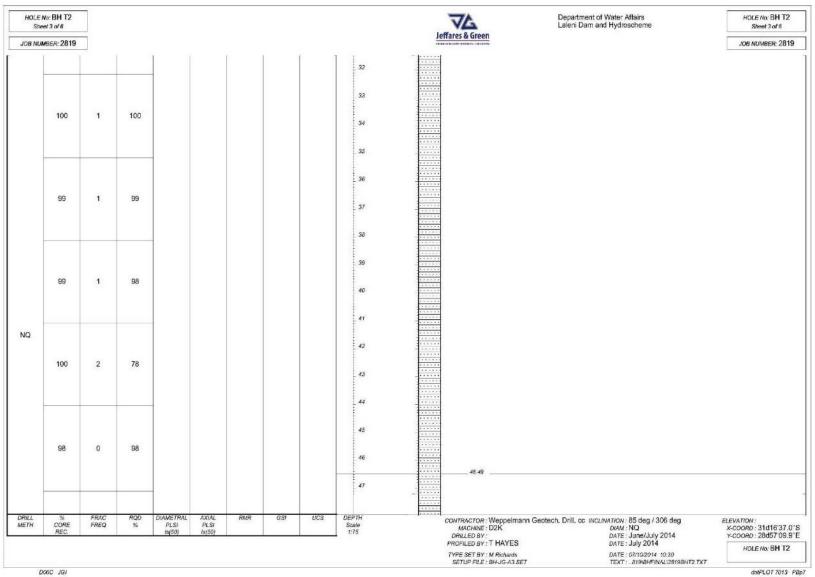


Fig D-3.3: Borehole Tunnel 2 - Log

OCTOBER 2014

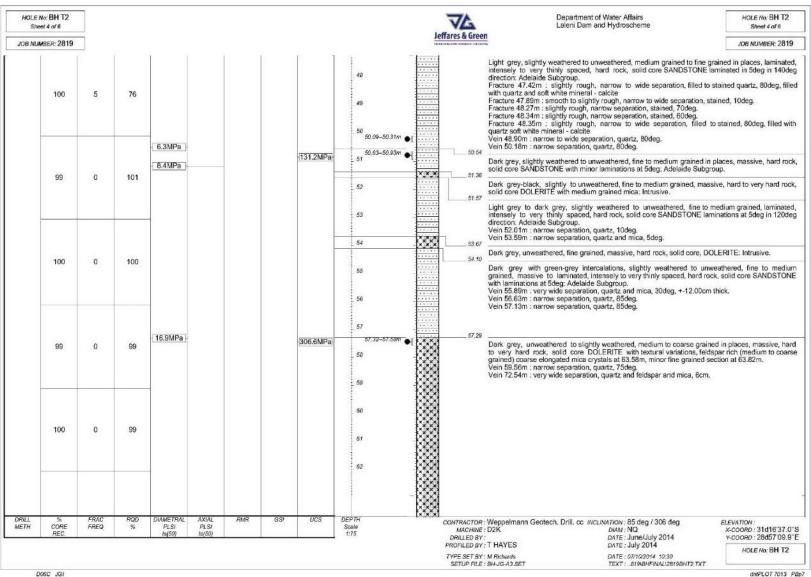


Fig D-3.4: **Borehole Tunnel 2 - Log**

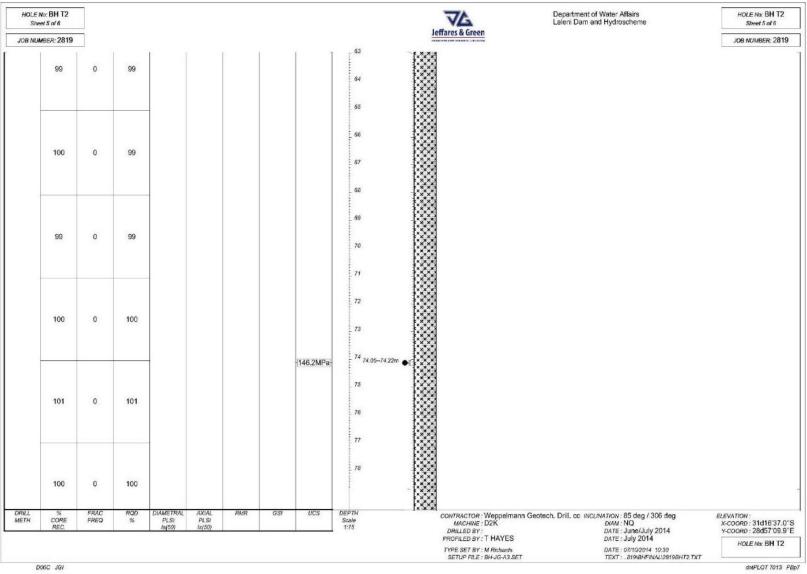


Fig D-3.5: Borehole Tunnel 2 - Log

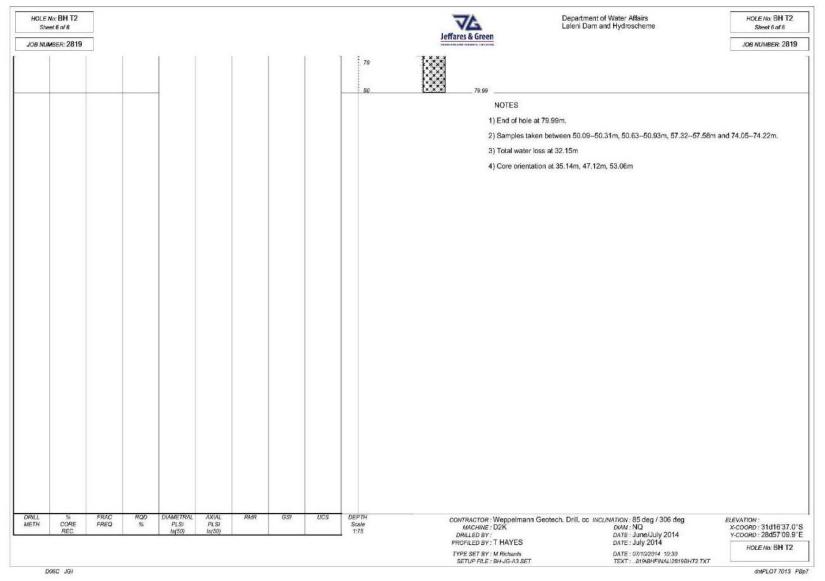


Fig D-3.6: Borehole Tunnel 2 - Log

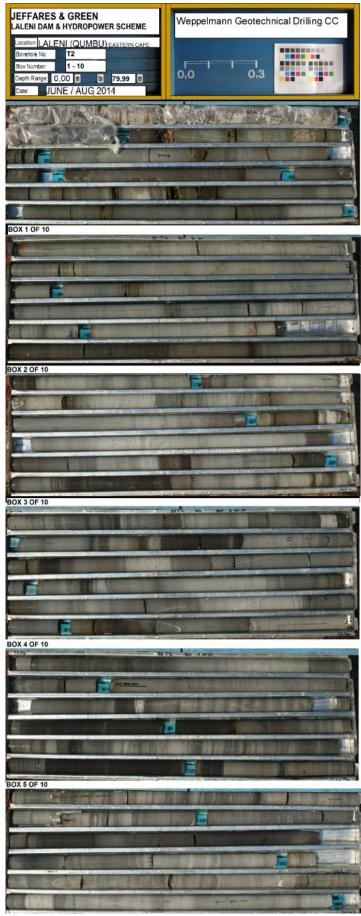


Fig D-4: Borehole Tunnel 1 – Box 1 to 5

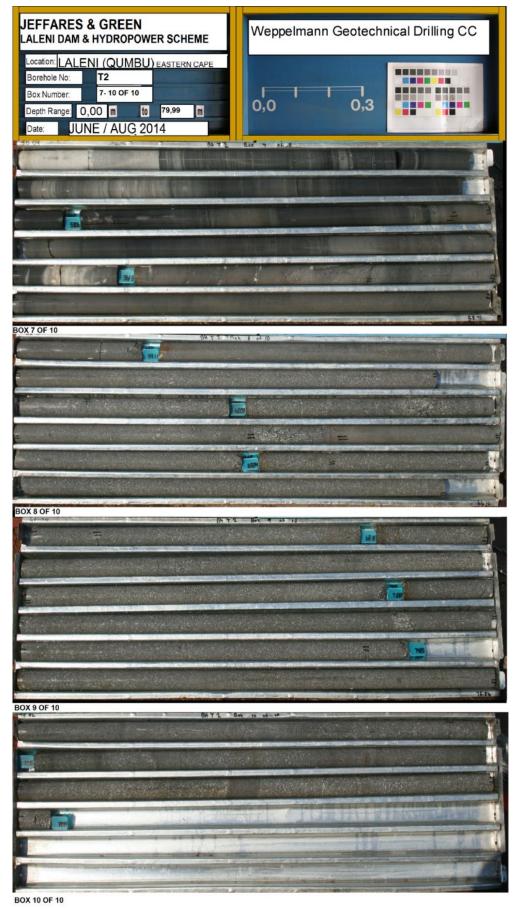


Fig D-4: Borehole Tunnel 1 – Box 6 to 10

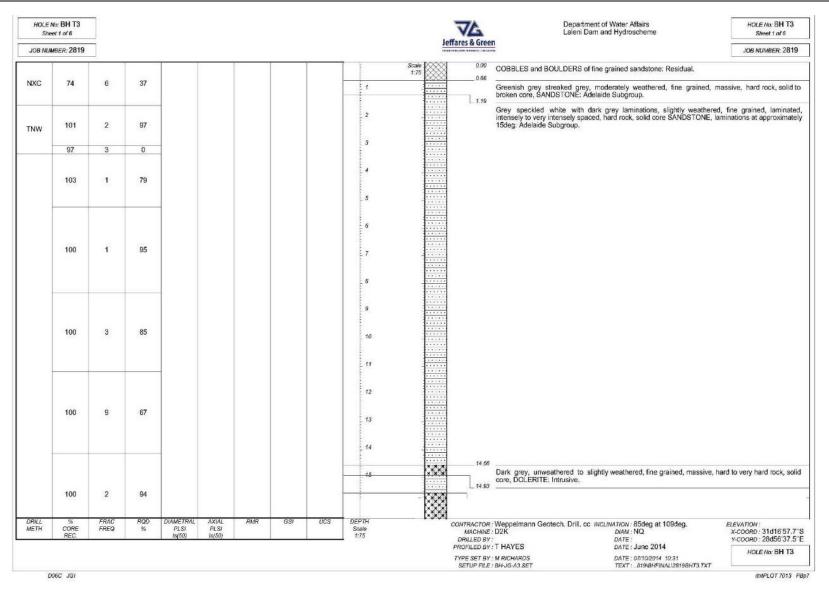


Fig D-5.1: Borehole Tunnel 3 – Log

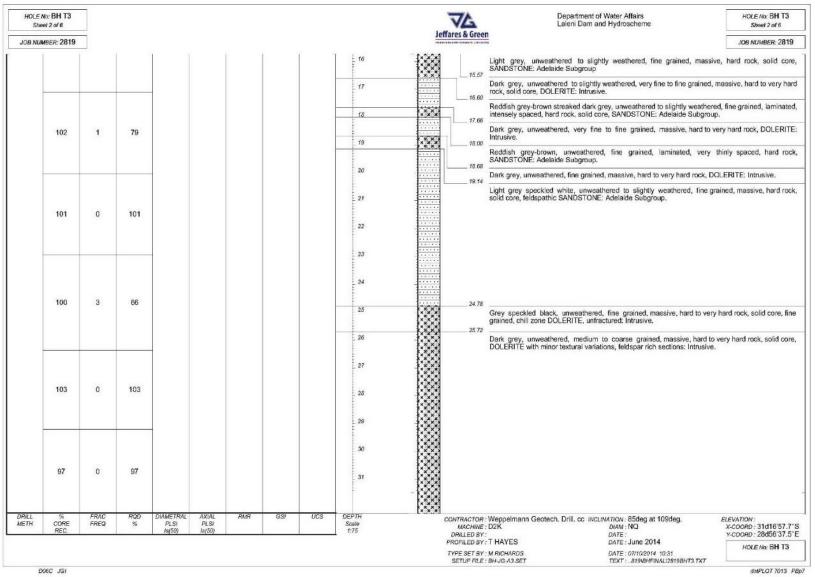


Fig D-5.2: Borehole Tunnel 3 – Log

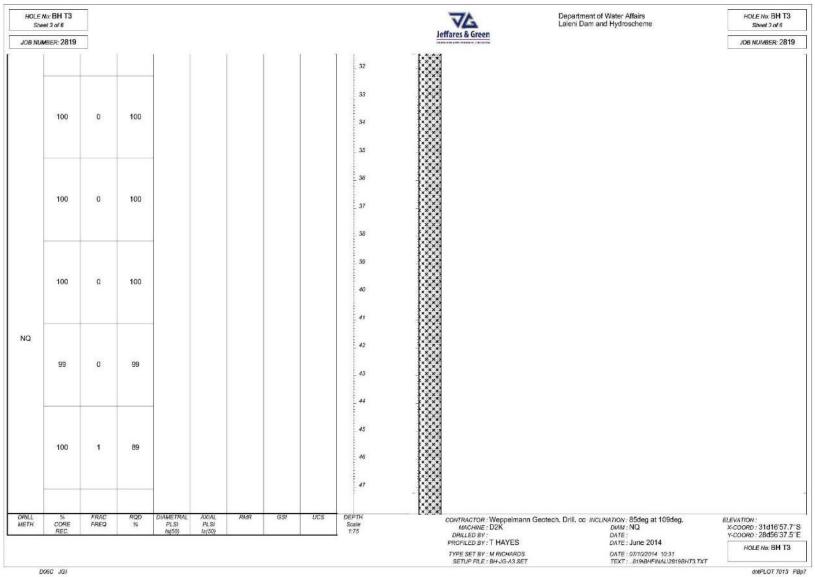


Fig D-5.3: Borehole Tunnel 3 – Log

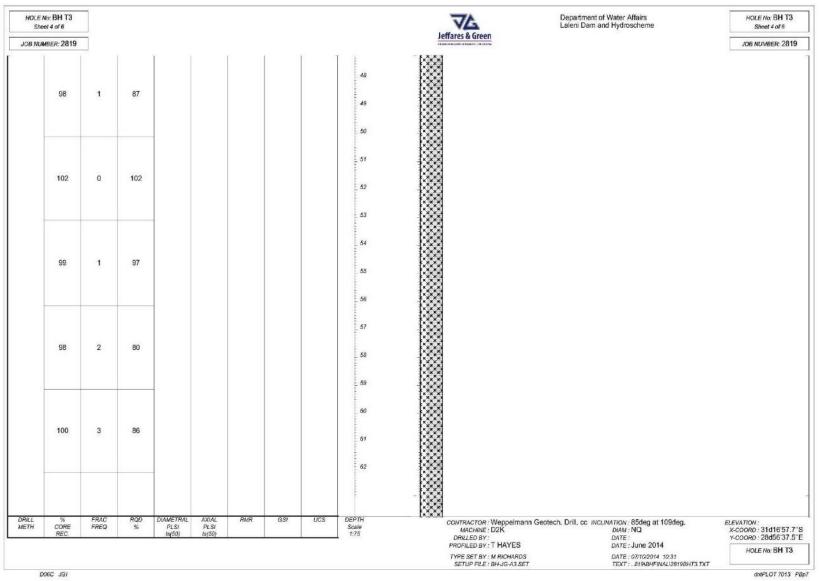


Fig D-5.4: Borehole Tunnel 3 – Log

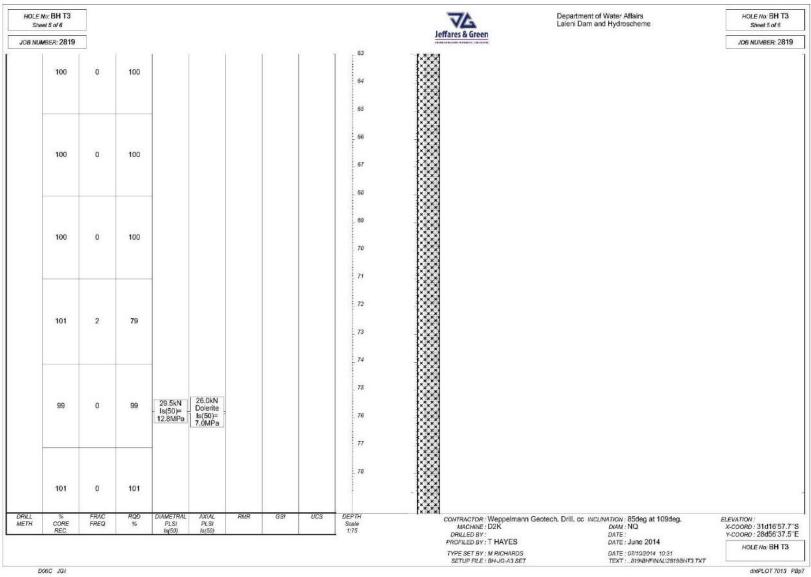


Fig D-5.5: Borehole Tunnel 3 – Log

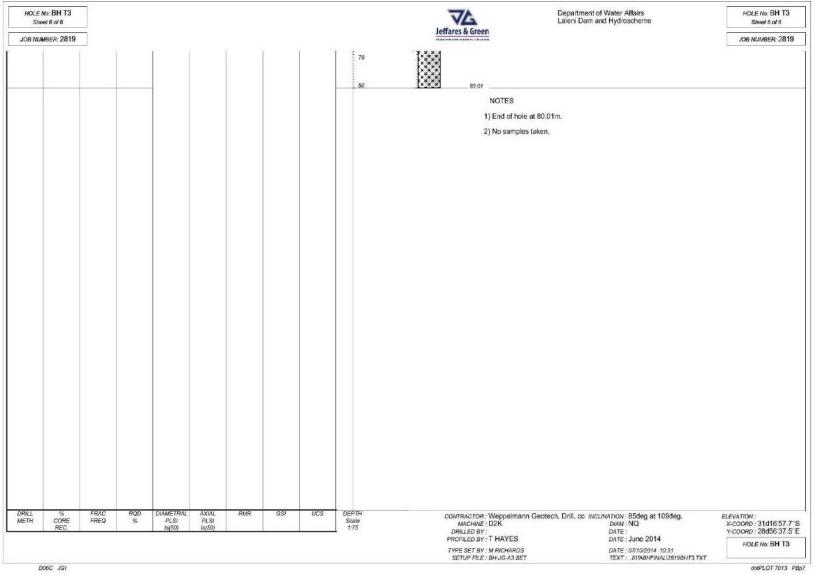


Fig D-5.6: Borehole Tunnel 3 – Log

OCTOBER 2014

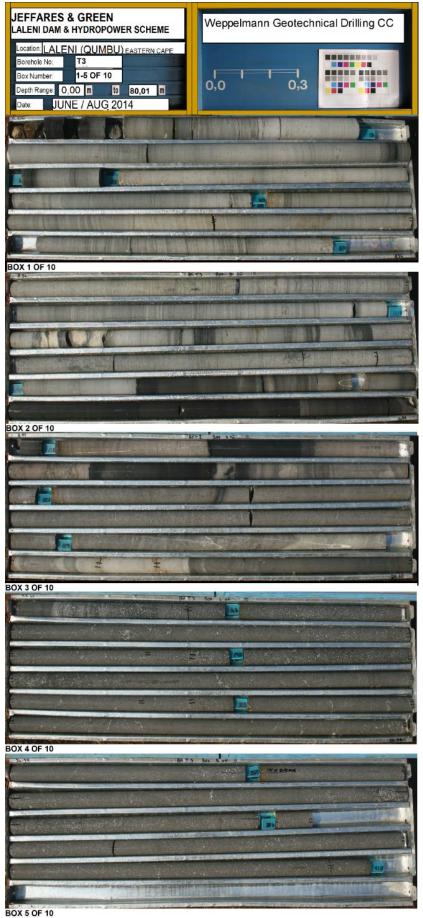


Fig D-6: Borehole Tunnel 3 – Box 1 to 4

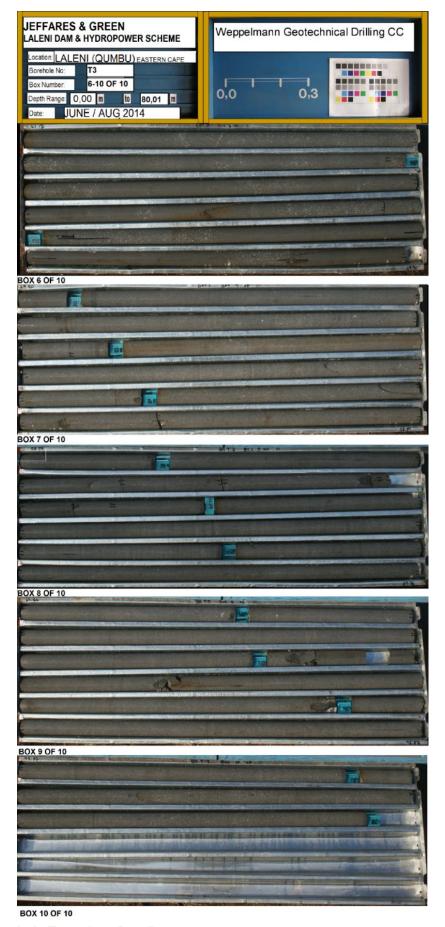


Fig D-6: Borehole Tunnel 3 – Box 5 to 10

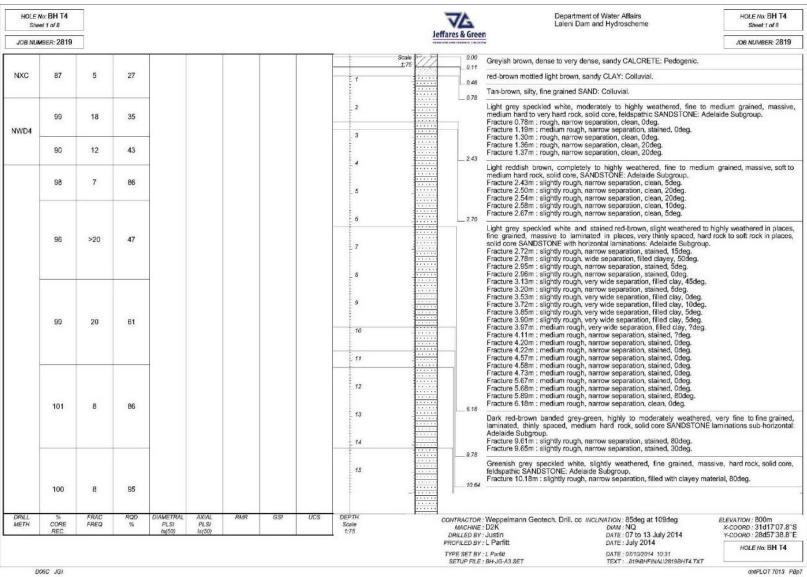


Fig D-7.1: Borehole Tunnel 4 – Log

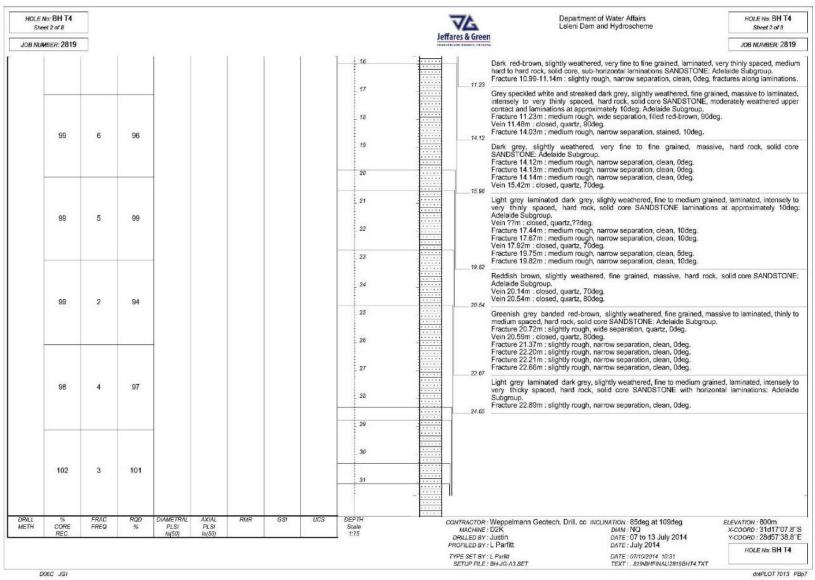


Fig D-7.2: Borehole Tunnel 4 – Log

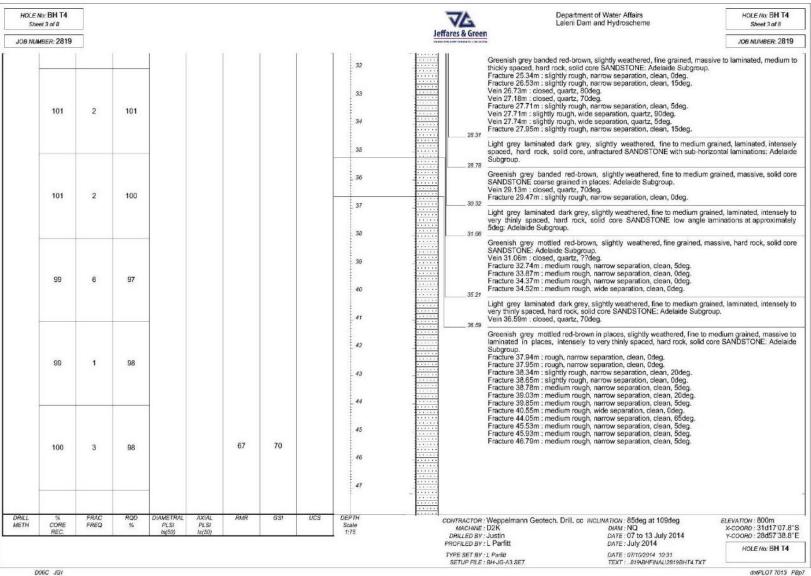


Fig D-7.3: Borehole Tunnel 4 - Log

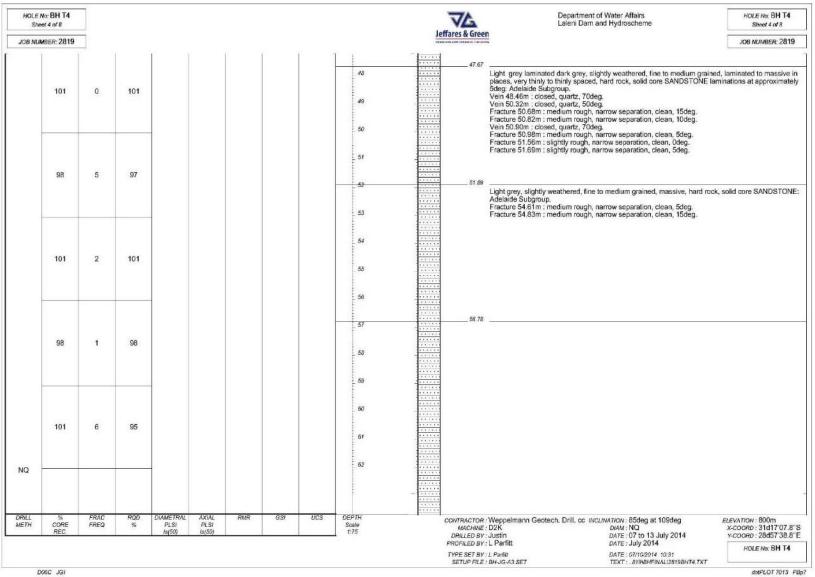


Fig D-7.4: Borehole Tunnel 4 – Log

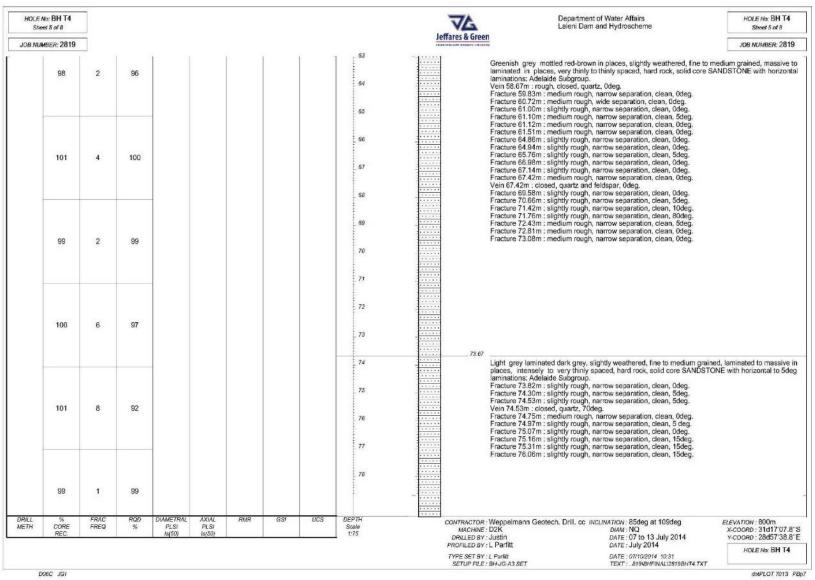


Fig D-7.5: Borehole Tunnel 4 – Log

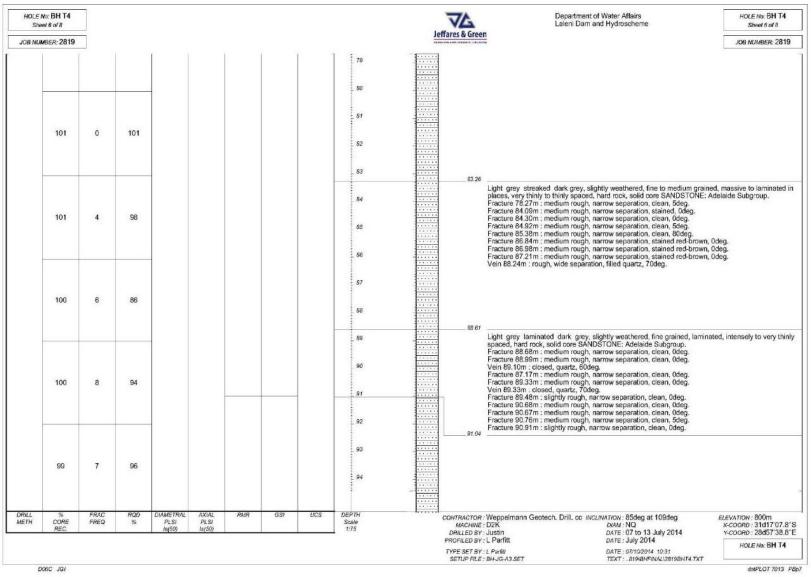


Fig D-7.6: Borehole Tunnel 4 – Log

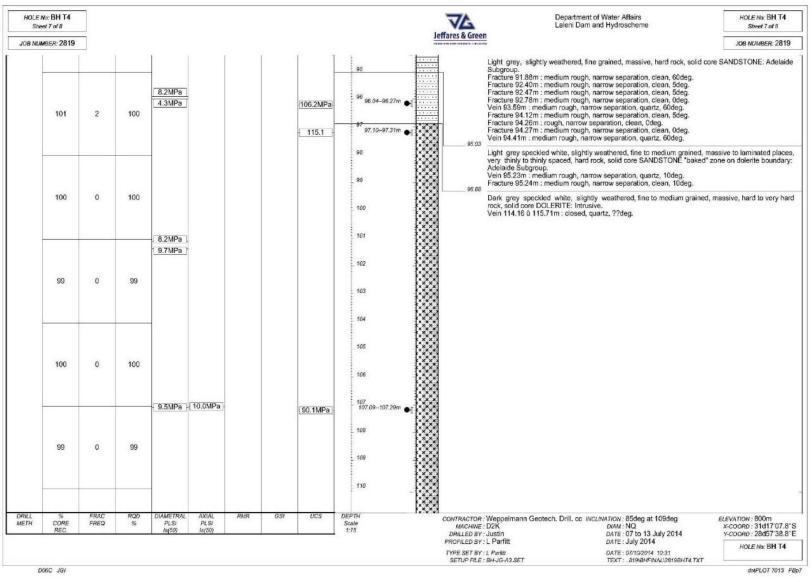


Fig D-7.7: Borehole Tunnel 4 – Log

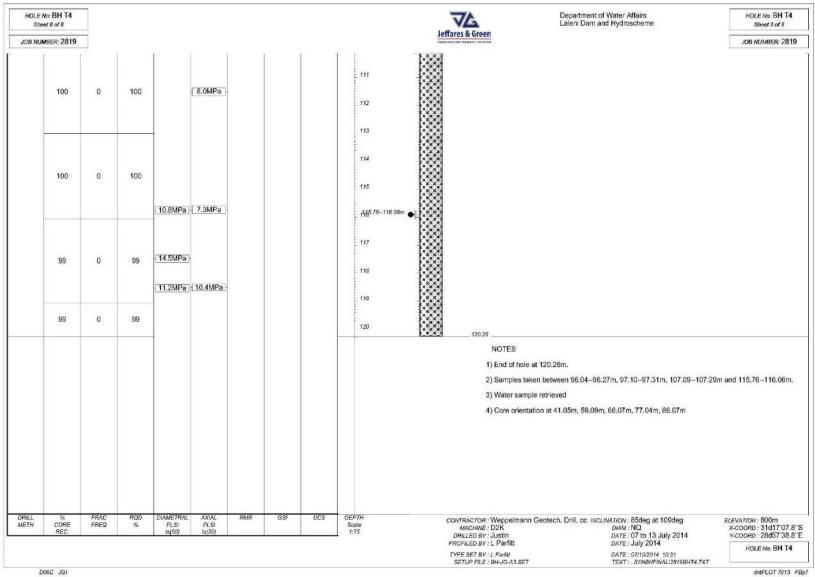


Fig D-7.1: Borehole Tunnel 4 – Log

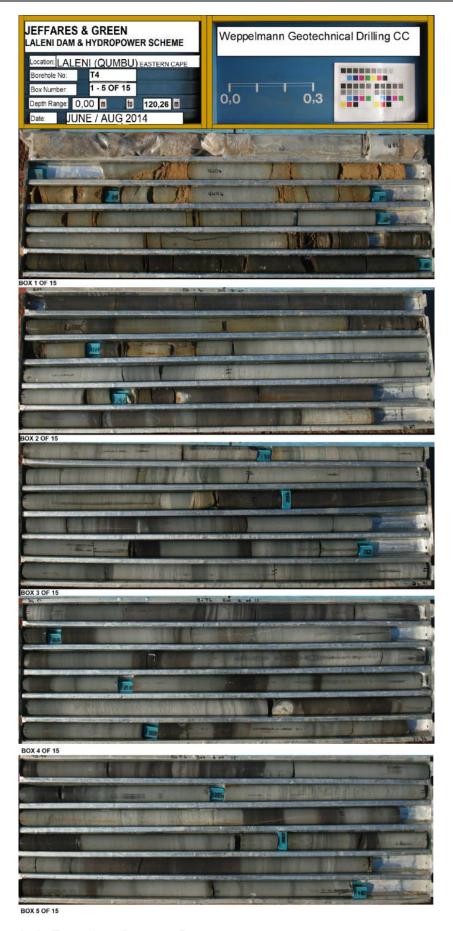


Fig D-8: Borehole Tunnel 4 – Box 1 to 5

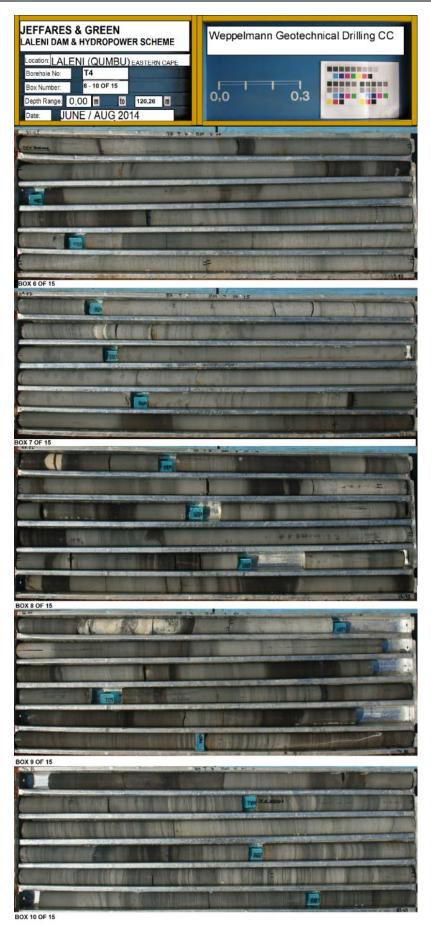


Fig D-8: Borehole Tunnel 4 – Box 6 to 10

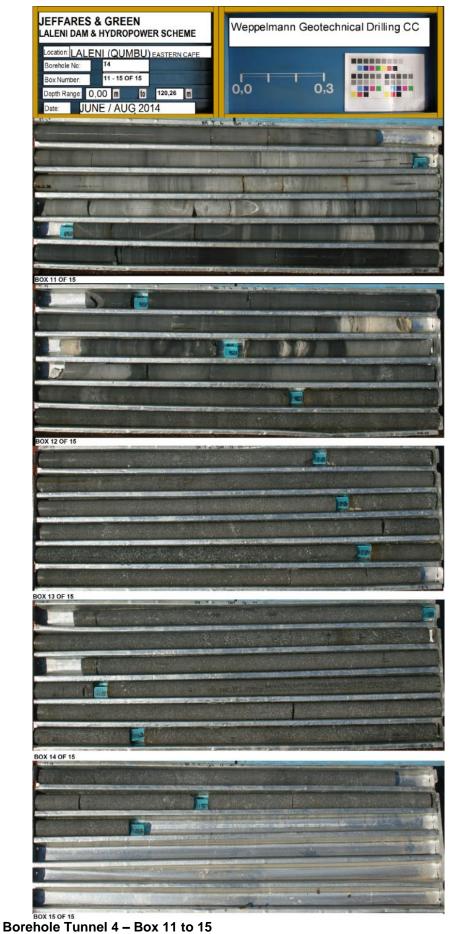


Fig D-8:

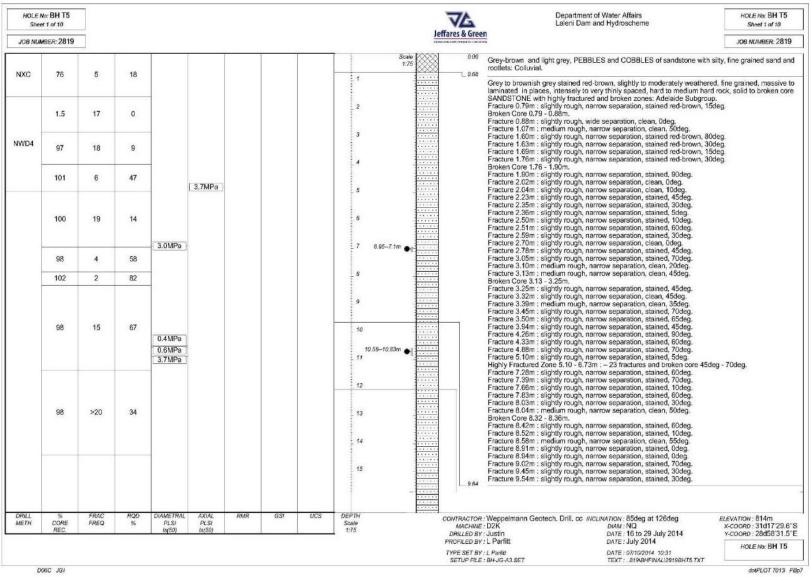


Fig D-9.1: Borehole Tunnel 5 – Log

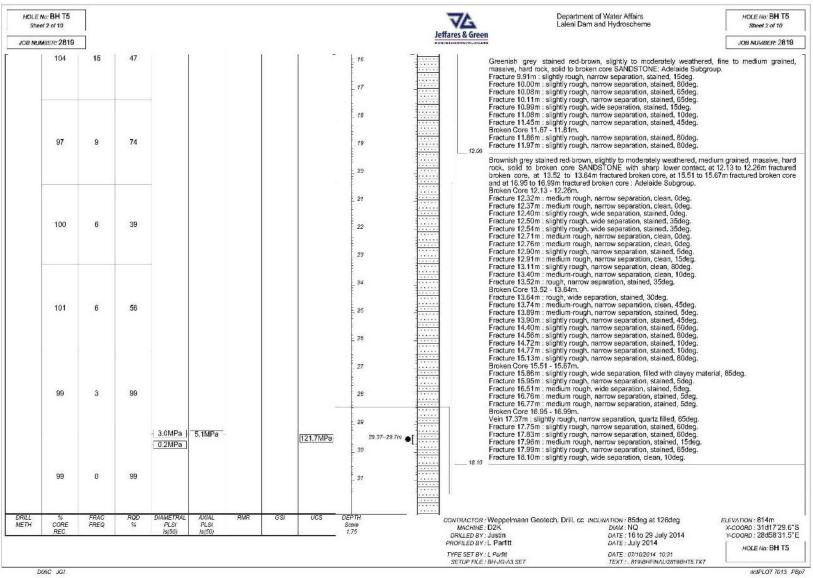


Fig D-9.2: Borehole Tunnel 5 - Log

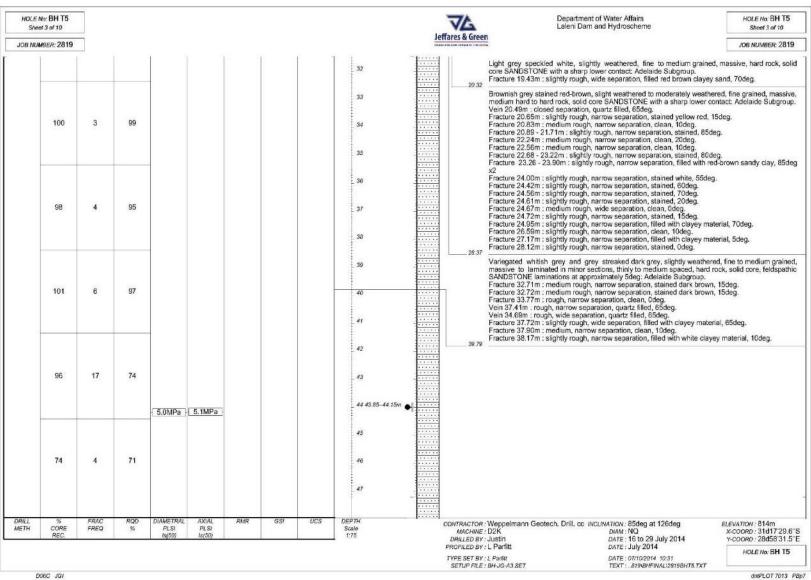


Fig D-9.3: Borehole Tunnel 5 – Log

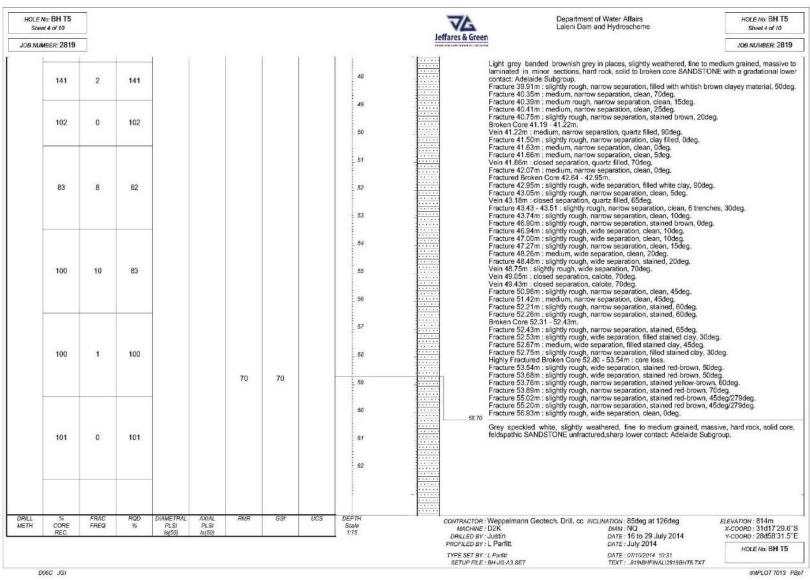


Fig D-9.4: Borehole Tunnel 5 – Log

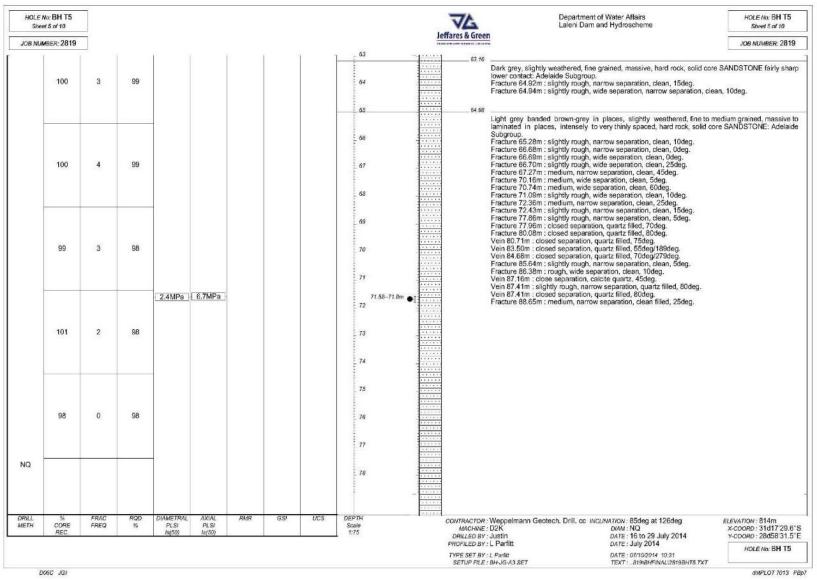


Fig D-9.5: Borehole Tunnel 5 – Log

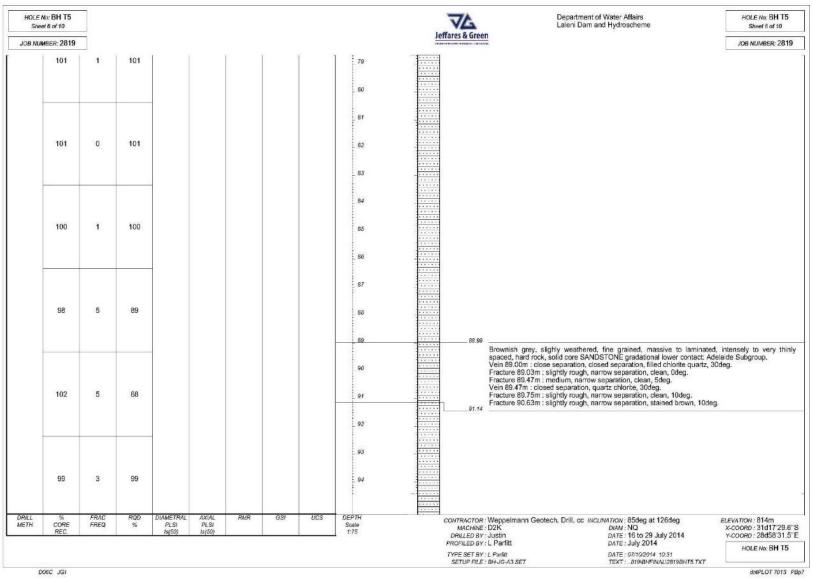


Fig D-9.6: Borehole Tunnel 5 – Log

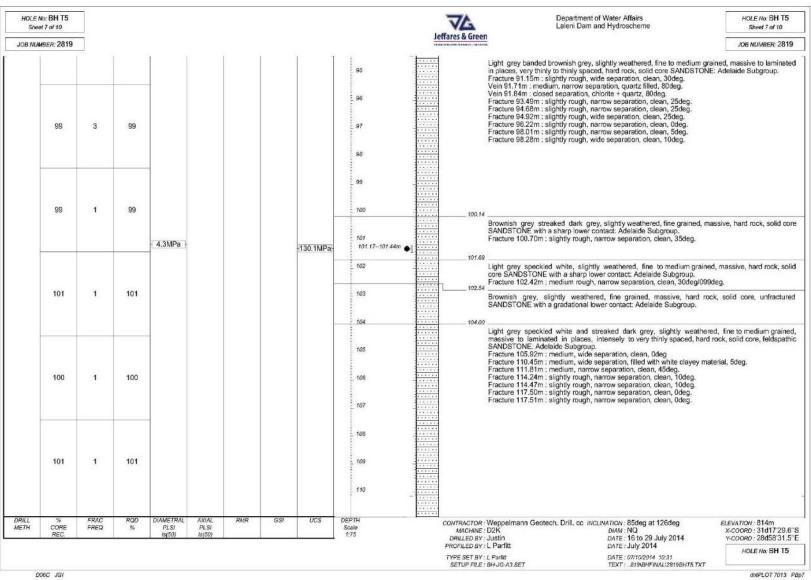


Fig D-9.7: Borehole Tunnel 5 – Log

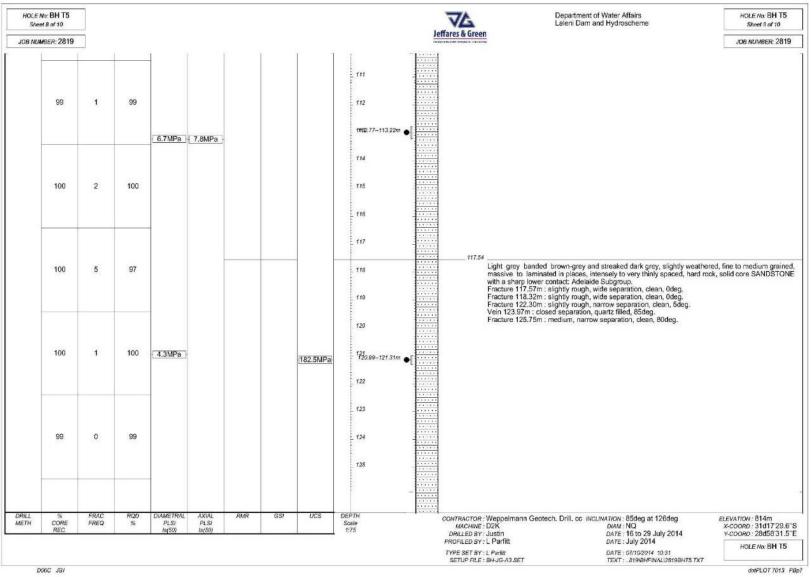


Fig D-9.8: Borehole Tunnel 5 – Log

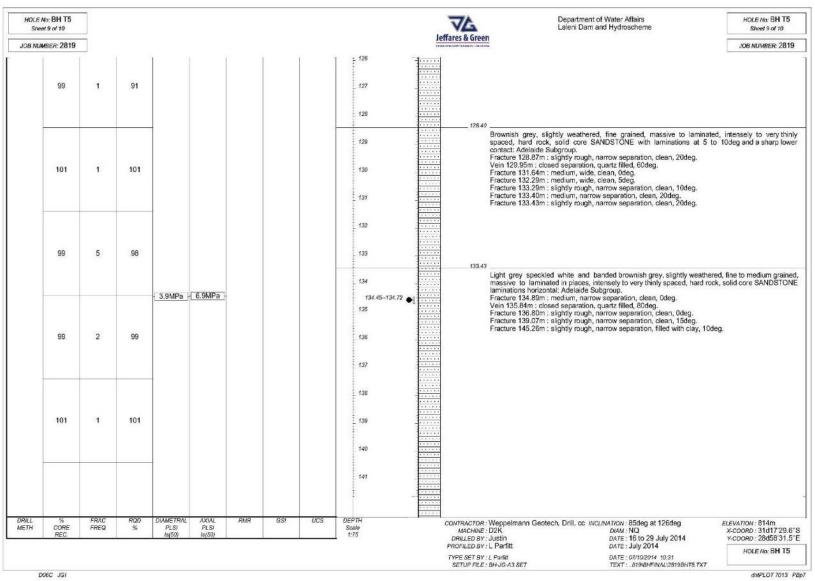


Fig D-9.9: Borehole Tunnel 5 – Log

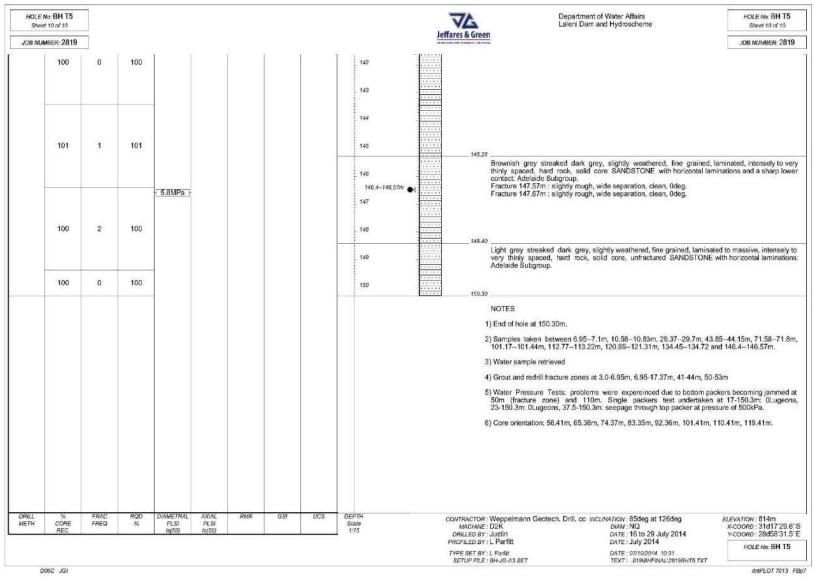


Fig D-9.10: Borehole Tunnel 5 - Log

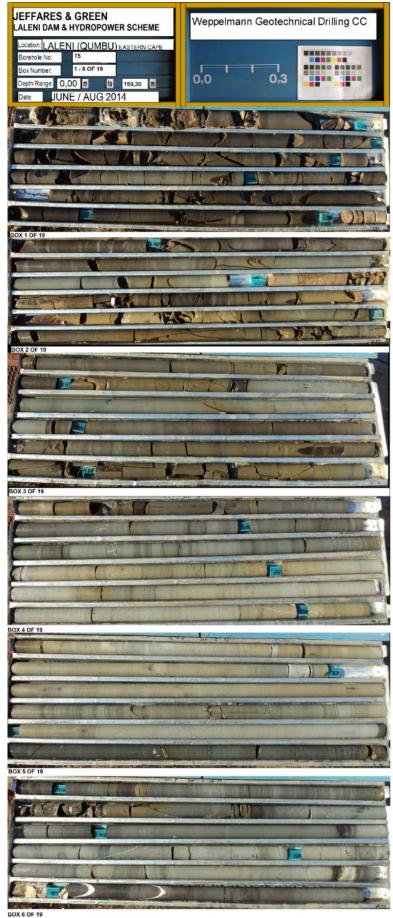


Fig D-11.1: Borehole Tunnel 5 – Box 1 to 6

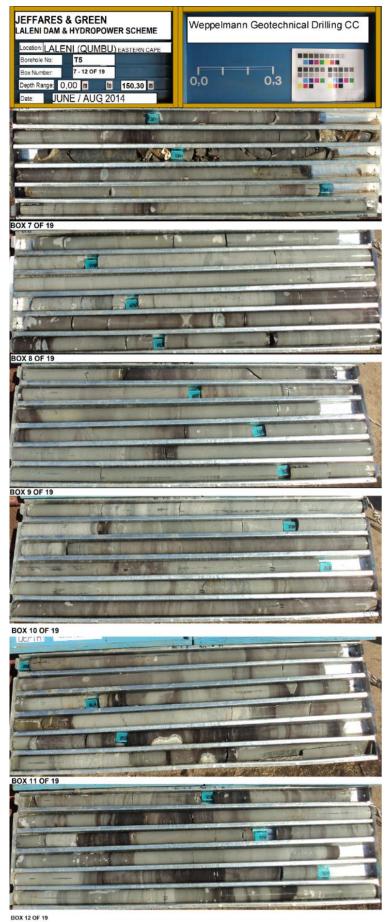


Fig D-11.2: Borehole Tunnel 5 – Box 7 to 12

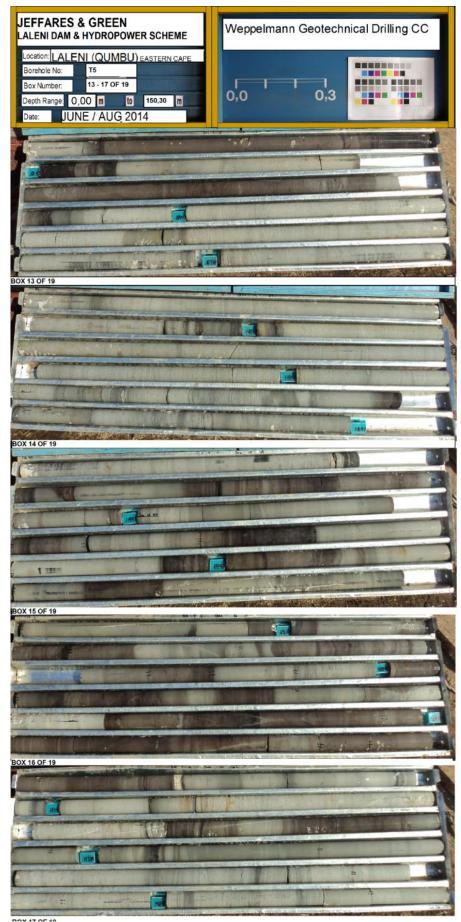


Fig D-11.3: Borehole Tunnel 5 – Box 13 to 17

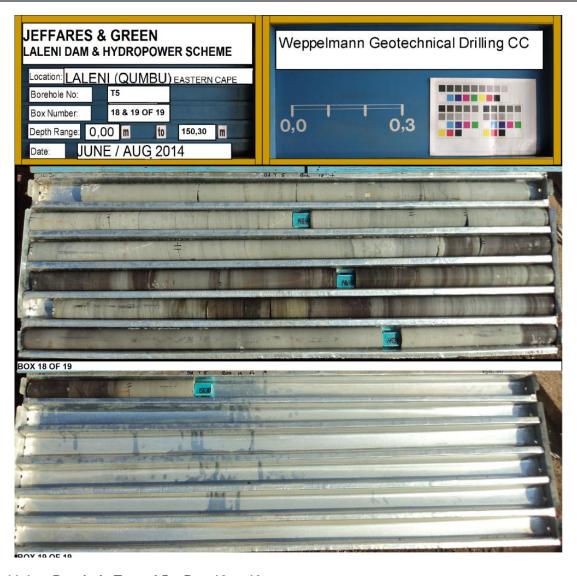


Fig D-11.4: Borehole Tunnel 5 – Box 18 to 19

Guage Pressure (Bars) A	Pressure due to Guage Height (Bars) B	Pressure due to water height above water table (Bars) C	Test Pressure (Bars) A+B+C	Duration (Seconds)	Injected Volume (I)	Top Level	Bottom Level	Length of hole	time in minutes	litres / metre /minute	Lugeon Units
				WP	Γ 17 – 150.3r	n					
1.55	0	0	1.55	600	103.9	17	150.3	133.3	10	0.0779	1
2.7	0	0	2.7	600	136.3	17	150.3	133.3	10	0.1023	0
3.85	0	0	3.85	600	142.4	17	150.3	133.3	10	0.1068	0
2.7	0	0	2.7	600	122.2	17	150.3	133.3	10	0.0917	0
1.33	0	0	1.33	600	110.4	17	150.3	133.3	10	0.0828	1
	-	-		WP	Γ 23 – 150.3r	n					
2.1	0	0	2.1	600	123.8	23	150.3	127.3	10	0.0973	0
3.65	0	0	3.65	600	181.6	23	150.3	127.3	10	0.1427	0
4	0	0	4	300	196.1	23	150.3	127.3	10	0.154	0
3.65	0	0	3.65	600	168	23	150.3	127.3	10	0.132	0
2.1	0	0	2.1	600	116.5	23	150.3	127.3	10	0.0915	0
	•	-		WPT	37.5 – 150.3	m					
3.4	0	0	3.4	600	141.6	37.5	150.3	112.8	10	0.1255	0
5	0	0	5	600	194	37.5	150.3	112.8	10	0.172	0
5	0	0	5	300	110	37.5	150.3	112.8	10	0.0975	0
	0	0	0			37.5	150.3	112.8	10	0	0
3.4	0	0	3.4	600	150.9	37.5	150.3	112.8	10	0.1338	0
Mzimvubu Depth from top of embankment to water table (m)									0		
Borehole No		Input Data T5 Height of guage above top of embankment (m)							0		

Table D-1: Water Pressure Tests – Borehole T5

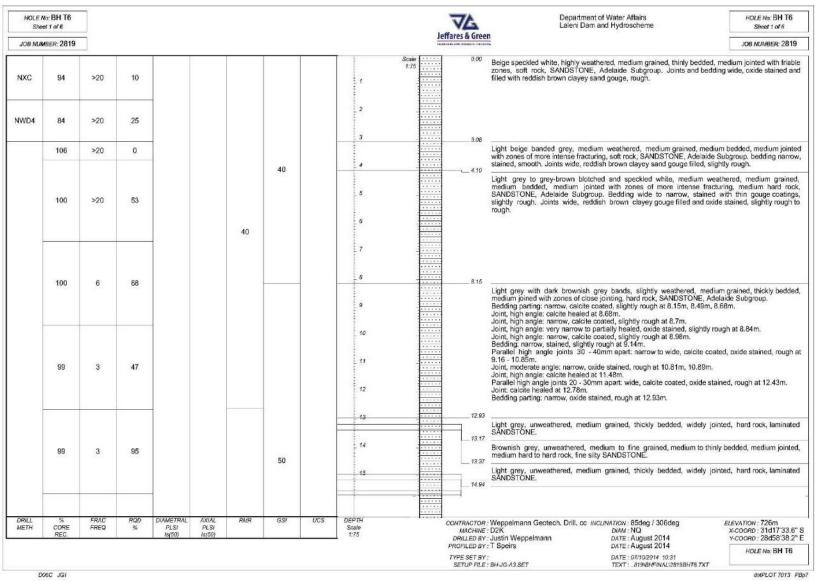


Fig D-12.1: Borehole Tunnel 6 - Log

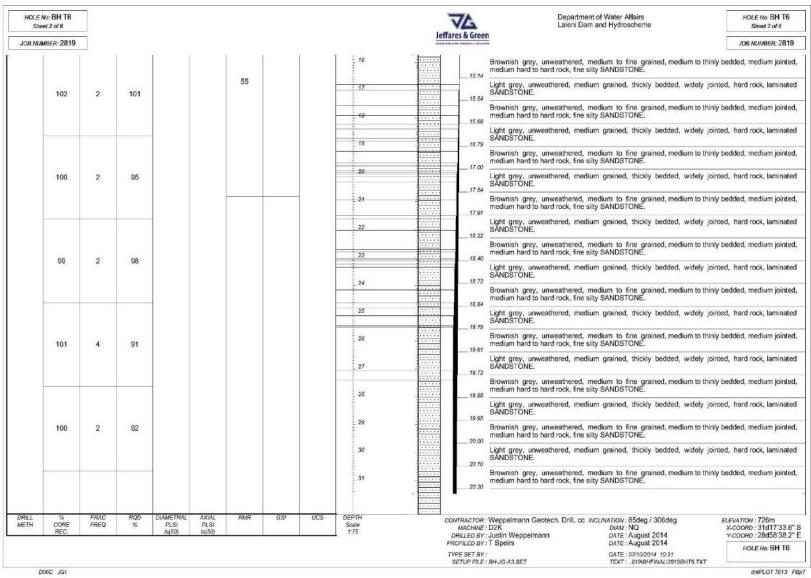


Fig D-12.2: Borehole Tunnel 6 - Log

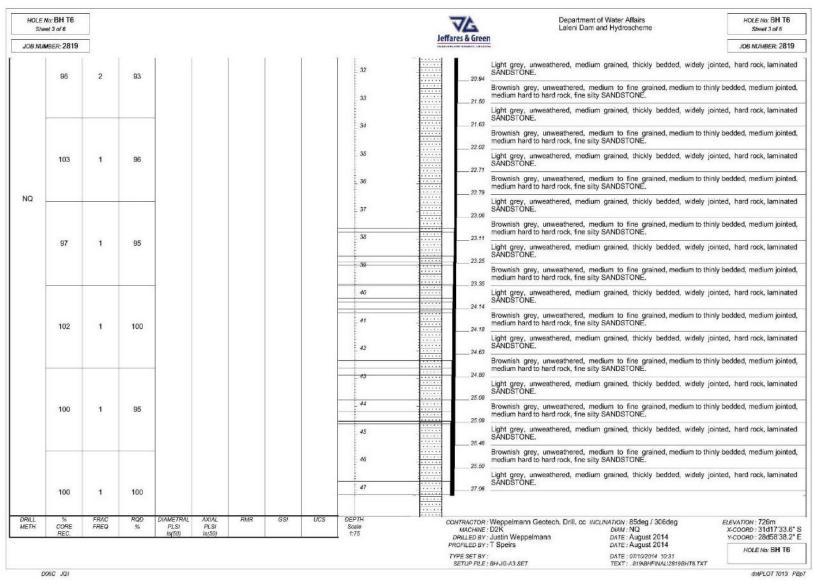


Fig D-12.4: Borehole Tunnel 6 - Log

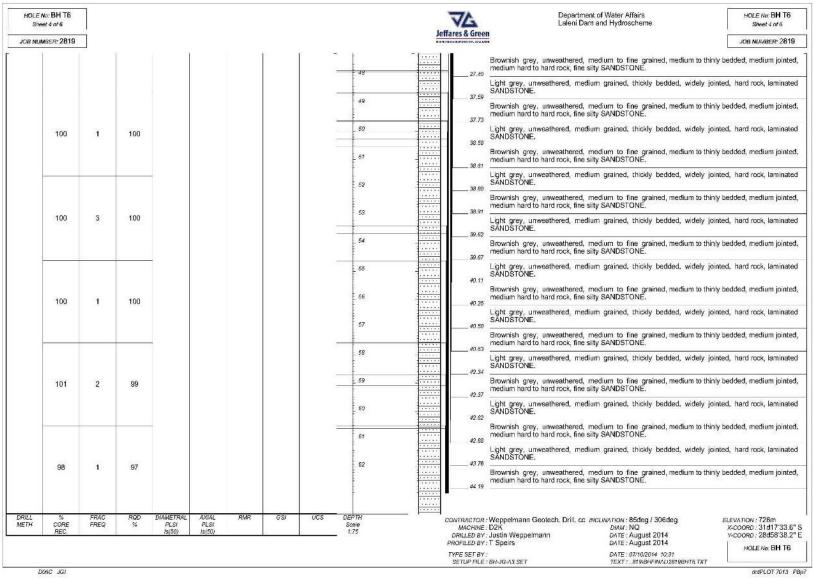


Fig D-12.4: Borehole Tunnel 6 - Log

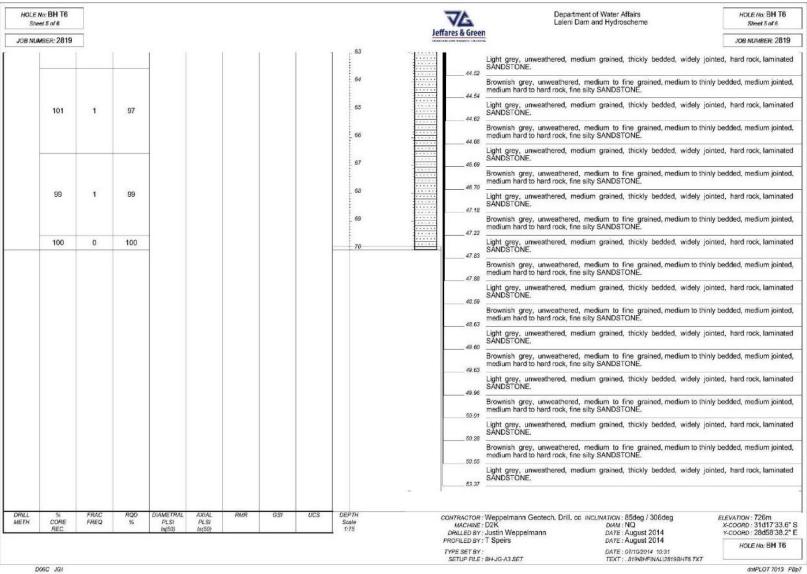


Fig D-12.5: Borehole Tunnel 6 - Log

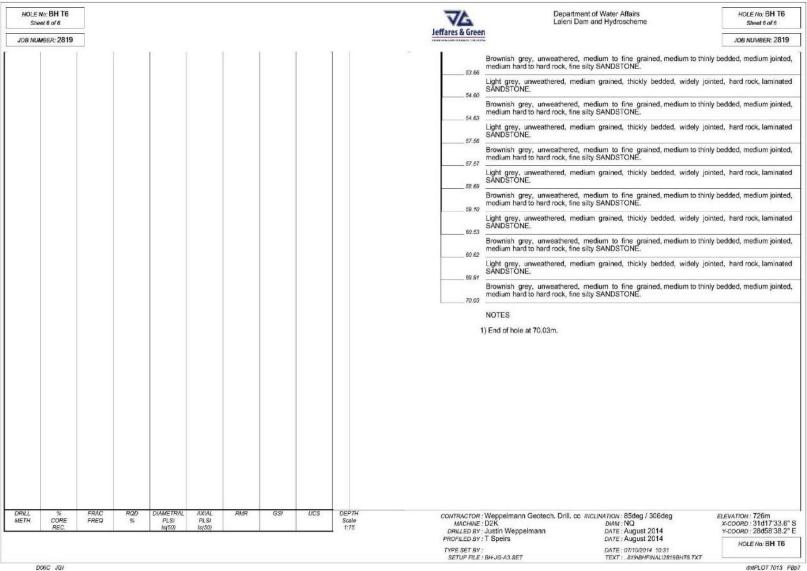


Fig D-12.6: Borehole Tunnel 6 - Log

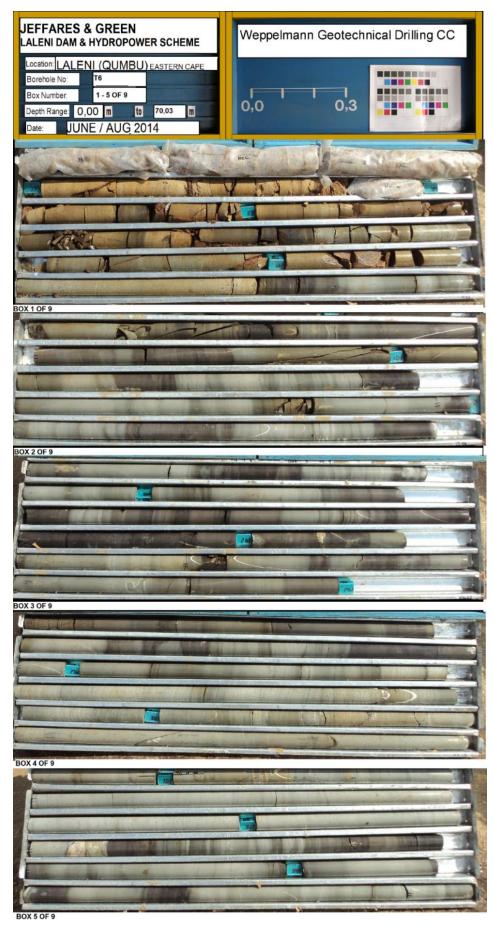


Fig D-13.1: Borehole Tunnel 6 – Box 1 to 5

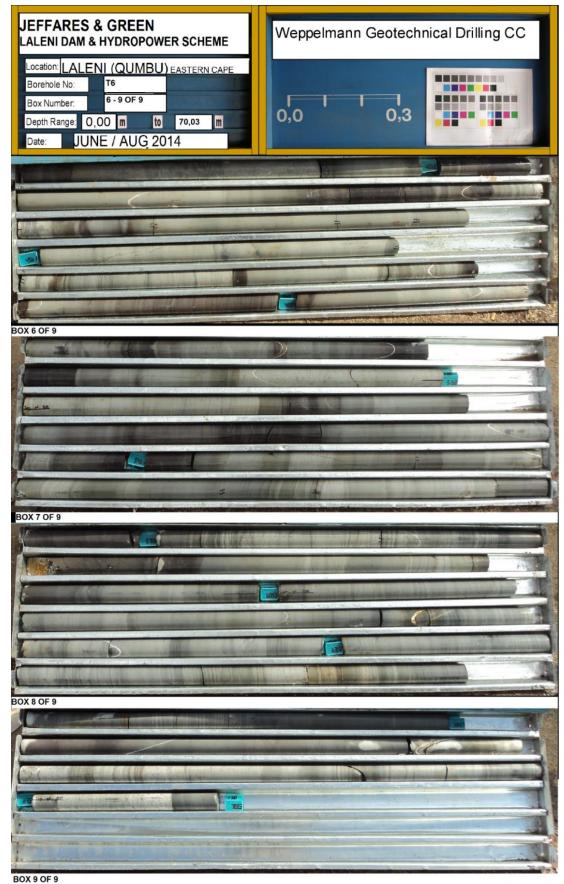


Fig D-13.2: Borehole Tunnel 6 – Box 6 to 9

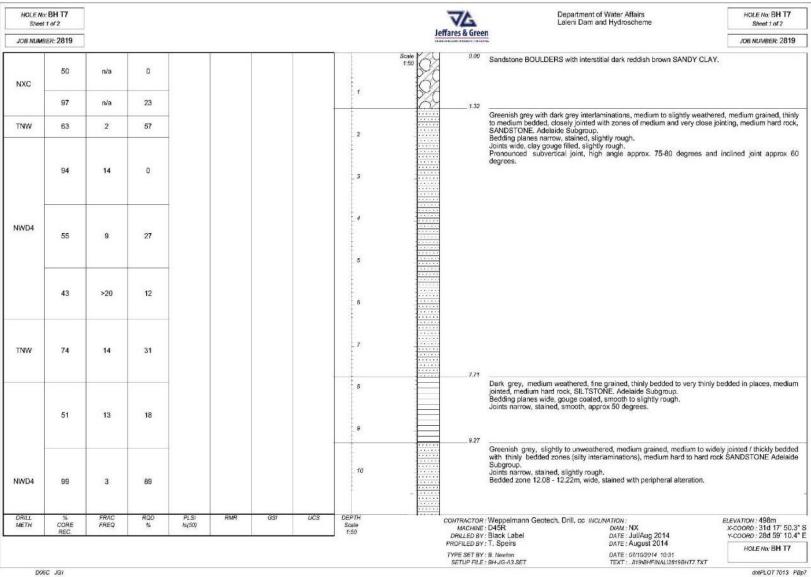


Fig D-14.1: Borehole Tunnel 7 - Log

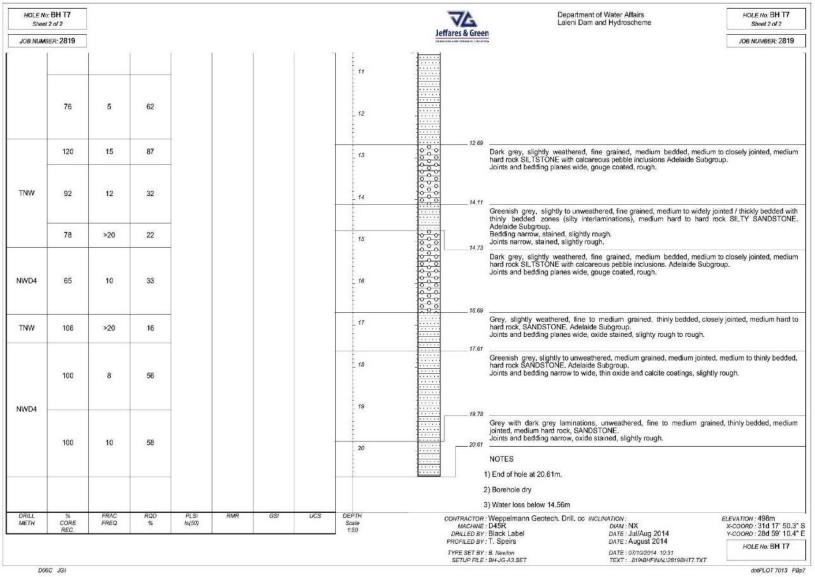


Fig D-14.2: Borehole Tunnel 7 - Log

Fig D-14: Borehole Tunnel 6 – Box 1 to 3

APPENDIX E LABORATORY TEST RESULTS

E1:

UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342

E-mail: ukhonkolo@contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

CJ 14/08/1005 Ref: 27 August, 2014

Client: Jaffares & Green

Project: 2819: Laleni Dam & Tunnel

Order: Not Given

LABORATORY REPORT **TESTING OF ROCK CORES**

1. CLIENT

Jeffares & Green (Pty) Ltd, PO Box 794, HILTON, Pietermaritzburg, 3201.

2. BRIEF FROM CLIENT

2.1 Contest was requested to determine the compressive strength of eleven rock cores received.

3. SAMPLES

Eleven rock cores, referenced Q2, 5.89 - 6.09 Dolorite, Q3, 3.1 4.49-4.63 Dolorite, D2, 4.51-4.76 Dolorite, D3, 3.80-3.98 Sandstone, D4, 6.67-6.80 Dolorite, T2 50,77-50.93 Sandstone, T2, 50,32 Dolorite, T2, 74,05 Dolorite, T4, 96, 13 Sandstone, 74,97,10 Dolorite, T4, 107.09 Dolrite by the client and 1005/1, 1005/2, 1005/3, 1005/4, 1005/5, 1005/6, 1005/7, 1005/8, 1005/9, 1005/10 and 1005/11 by Contest, were received on 12.08.2014.

4. TESTING

4.1 Eleven cores were tested on 18.08.2014 in accordance with SANS 5865:2006.

5. INFORMATION SUPPLIED BY THE CLIENT

4.1 Site : Laleni Dam and Tunnel

4.2 Location : Not Given 4.3 Drilling contractor : Not given

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services Managing Member: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng),FICT, MSA Corr I Members: MT Clark, JS Dunnett, MC Mzobe, RJL Raw B Tech (Civil Eng)

Page 1 of 4

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ 14/08/1005 27 August, 2014

Client: Jaffares & Green

Project: 2819: Laleni Dam & Tunnel

Order: Not Given

6. CORE PREPARATION

- 6.1 Testing of cores were carried out by our laboratories in Westmead
- 5.2 The cores were measured as received; any significant details recorded and then marked up for trimming.
- 5.3 The cores were photographed in surface dry and wet states.
- 5.4 After trimming to length the cores were weighed in air and water, in order to determine the density.

7. RESULTS

7.1 See appended Annexure A and photographs.

RJL RAW B Tech (Civil Eng)

Mman

This report and any Annexures shall not be reproduced, except in full, without the written approval of Contest

Tria report and	any Annexures snai		XURE A	maious are write	an approval of O	3111001
Client		ANIAL		0.000=		-
Client Project		Jeffares & Green 2819: Laleni Dam & Tunnel				
Job Number				08/1005	1	
Date Cast				Given		
Date Tested				3.2014		
Age, Day				Given		
Date Received				3.2014		
Direction of Dilling				Given		
Report date				3.2014		
Client Reference	Q2 5.89-6.09	Q3 4.49-4.63	D2 451-4.76	D3 3.80-3.98	D4 6.67-6.80	T2 50.77-50.93
Contest Reference	1005/1	1005/2	1005/3	1005/4	1005/5	1005/6
DIMENSIONS	1003/1	1003/2	1003/3	1005/4	1000/0	1003/0
Max length (mm	204	140	275	195	128	175
Min length (mm	12787363	139	250	180	127	160
Diameter (mm		51.20	60.08	51.06	60.11	47.06
Trim Length (mm		51.20	60.07	51.08	60.09	47.05
Capped length (mm		51.20	60.07	51.08	60.09	47.05
Trim length/diameter		1.00	1.00	1.00	1.00	1.00
Cap length/diameter	1.00	1.00	1.00	1.00	1.00	0.00
Cap length/diameter	1.00	1.00	1.00	1.00	1.00	0.00
REINFORCEMENT						
	Steel 1	Steel 1	Steel 1	Steel 1	Steel 1	Steel 1
Dist. from end (mm)	0.0	0.0	0.0	0.0	0.0	0.0
Diameter (mm)	0.0	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0	0.0
(0)	Steel 2	Steel 2	Steel 2	Steel 2	Steel 2	Steel 2
Dist. from end (mm)	0.0	0.0	0.0	0.0	0.0	0.0
Diameter (mm)	0.0	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0	0.0
DENSITY					7	
Mass in air (g)	322.50	3227.00	456.90	270.30	450.50	219.50
Density (kg/m3)	2986	1071	2655	2531	2638	2680
Air Voids %	0.00	0.00	0.00	0.00	0.00	0.00
CORRECTIONS						
Length	1.00	1.00	1.00	1.00	1.00	1.00
Steel reinforcement	1.00	1.00	1.00	1.00	1.00	1.00
Air voids	1.00	1.00	1.00	1.00	1.00	1.00
Section Section 6000 5					-(
LOADING						
Load at failure (kN)	390.4	351.3	544.3	227.1	411.9	228.2
Failure mode	normal	normal	normal	normal	normal	normal
STRENGTH (MPa)						
Uncorrected Strength	189.0	170.6	192.0	110.9	145.2	131.2
Length corrected	189.0	170.6	192.0	110.9	145.2	131.2
Length/Steel correcte	The state of the s	170.6	192.0	110.9	145.2	131.2
Length/Voids/Steel corrected		170.6	192.0	110.9	145.2	131.2

SABS 0100-2, Clause 14.4.2, states that: "At least THREE representative cores shall be taken from each member or predetermined volume of concrete in locations that are considered potentially deficient." If the core strengths given in this report are to be used for acceptance in accordance with SABS 0100-2 (or any other specification with similar requirements to those of SABS 0100-2) then the requirements must be complied with otherwise, acceptance based on core strengths using the results given in this report, cannot be made.

This annexure must be read in conjunction with the complete report as indicated by the page number.

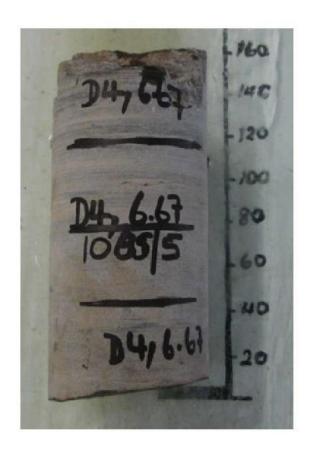
Morrian

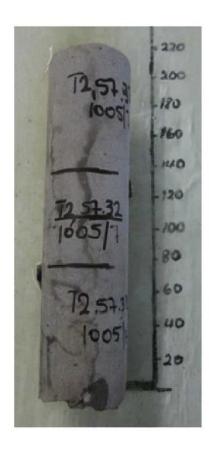
This report and any Annexures shall not be reproduced, except in full, without the written approval of Contest

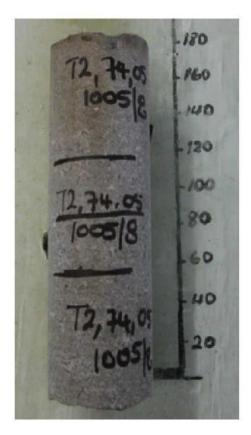
	A	NNEXUR	ΕA		
Client			effares & Gree		
Project			eni Dam & Tur		
Job Number	CJ 14/08/1005				
Date Cast			Not Given		
Date Tested			18.08.2014		
Age, Day			Not Given		
Date Received			12.08.2014		
Direction of Drilling			Not Given		
Report date			27.08.2014		
Client Reference	T2, 50,32	T2, 74,05	T4 96.13	74, 97, 10	T4, 107, 09
Contest Reference	1005/7	1005/8	1005/9	1005/10	1005/11
DIMENSIONS		3.70.70.70.70	1.000.0		
Max length (mm)	190	165	140	133	205
Min length (mm)	189	163	139	132	204
Diameter (mm)	47.05	47.10	47.04	47.31	47.08
Trim Length (mm)	47.05	47.06	47.04	47.04	47.07
Capped length (mm)	47.05	47.06	47.04	47.04	47.07
Trim length/diameter	1.00	1.00	1.00	1.01	1.00
Cap length/diameter	1.00	1.00	1.00	1.01	1.00
Cap lengin/diameter	1.00	1.00	1.00	1.01	1.00
REINFORCEMENT					
	Steel 1	Steel 1	Steel 1	Steel 1	Steel 1
Dist. from end (mm)	0.0	0.0	0.0	0.0	0.0
Diameter (mm)	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0
(g)	Steel 2	Steel 2	Steel 2	Steel 2	Steel 2
Diet from and (mm)	0.0	0.0	0.0	0.0	0.0
Dist. from end (mm) Diameter (mm)	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0
DENSITY					
Mass in air (g)	241.50	240.30	218.20	238.10	237.90
Density (kg/m3)	2931	2923	2704	2921	2933
Air Voids %	0.00	0.00	0.00	0.00	0.00
CORRECTIONS					
CORRECTIONS	4.00	4.00	4.00	4.00	4.00
Length	1.00	1.00	1.00	1.00	1.00
Steel reinforcement	1.00	1.00	1.00	1.00	1.00
Air voids	1.00	1.00	1.00	1.00	1.00
LOADING					
Load at failure (kN)	533.1	254.7	184.6	202.4	156.8
Failure mode	normal	normal	normal	normal	normal
STDENCTH (MD-)					
STRENGTH (MPa) Uncorrected Strength	306.6	146.2	106.2	115.1	90.1
	306.6	146.2	106.2	115.1	90.1
Length corrected	1.074.5 N.754.7 S				177771
Length/Steel corrected	306.6	146.2	106.2	115.1	90.1
Length/Voids/Steel corrected	306.6	146.2	106.2	115.1	90.1

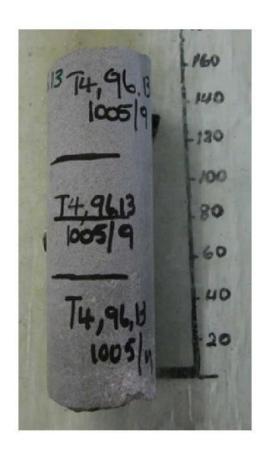
SABS 0100-2, Clause 14.4.2, states that: "At least THREE representative cores shall be taken from each member or predetermined volume of concrete in locations that are considered potentially deficient." If the core strengths given in this report are to be used for acceptance in accordance with SABS 0100-2 (or any other specification with similar requirements to those of SABS 0100-2) then the requirements must be complied with otherwise, acceptance based on core strengths using the results given in this report, cannot be made.

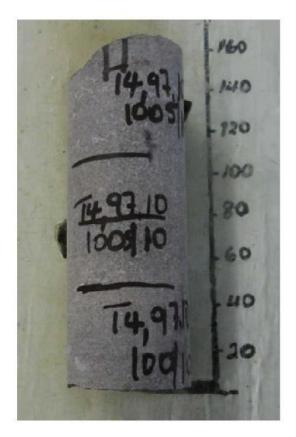
Miller

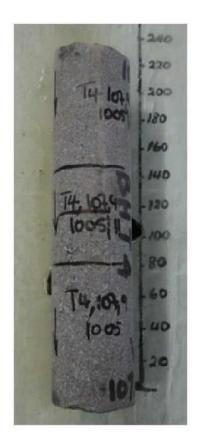












P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342 E-mail: contest@contest.co.za www.contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest
The results relate only to the items tested

Ref: CJ 14/081018 27 August 2014

Client: Jeffares and Green

Project: Not Given
Order No: Not Given

LABORATORY REPORT TESTING OF ROCK CORES

1. CLIENT

1.1 Jaffares & Green (Pty) Ltd, PO Box 794, HILTON, Pietermaritzburg, 3201

2. BRIEF FROM CLIENT

2.1 Contest was requested to determine the compressive strength of three rock cores on 15.08.14. These were tested in accordance with SANS 5865:2006 for concrete.

3. SAMPLES

3.1 Three cores referenced, BHT5 29.37m-29.70m, BHT5 101.17m-101.41 and BHT5 120.99-121.31m by the client and 1018/1, 1018/2, 1018/3 and 1018/4 by Contest were received on 15.08.2014.

4. SAMPLE INFORMATION SUPPLIED BY THE CLIENT

4.1 Site : Not Given 4.2 Location : Not Given

5. TESTING

5.1 Three cores were tested on 23.08.2014 in accordance with SANS 5865:2006.

6. CORE PREPARATION

6.1 Testing of cores were carried out by our laboratories in Westmead

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services
Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe, VA Horton
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng), FICT, MSA Corr I

Page 1 of 4

Testing, Training and Consulting in Concrete

This report shall not be reproduced, except in full, without the approval of Contest The results relate only to the items tested

Ref: CJ 14/081018 27 August 2014

Client: Jeffares and Green

Project: Not Given
Order No: Not Given

- 6.2 The cores were measured as received; any significant details recorded and then marked up for trimming.
- 6.3 The cores were photographed in surface dry and wet states.
- 6.4 After trimming to length the cores were weighed in air and water, in order to determine the density.
- 6.5 Finally the cores were capped using sulphur mortar and soaked for 48 hours in water prior to testing for compressive strength.

7. RESULTS

7.1 See appended Annexure A and photographs.

8. INTERPRETATION OF CORE COMPRESSIVE STRENGTH

- 8.1 If the core strengths given in this report are to be used for acceptance in accordance with SABS 0100-2 (or any other specification with similar requirements to those of SABS 0100-2) then the requirements must be complied with otherwise, acceptance based on core strengths using the results given in this report, cannot be made.
- 8.2 Results given in the attached core report have been adjusted to allow for the presence of transverse reinforcing bars, for length/diameter ratios that fall outside the prescribed ratio and for excess voids, when necessary. Adjustments have been made in accordance with the guidelines given in SANS 5865:2006.
- 8.3 The following extract from SABS 0100-2: Edition 2.2:2000 should be used when assessing the acceptability of concrete based on the compressive strength of cores. The extract is reproduced with the kind permission of the SABS.

14.4.2 CORE TESTS

At least **three** representative cores shall be taken from each member or predetermined volume of concrete in locations that are considered potentially deficient.

14.4.3 ACCEPTANCE OF CONCRETE ON THE BASIS OF CORE STRENGTHS

Page 2 of 4

This report shall not be reproduced, except in full, without the approval of Contest

The results relate only to the items tested

Ref: CJ 14/081018 27 August 2014

Client: Jeffares and Green

Project: Not Given
Order No: Not Given

- 14.4.3.1 If the average core strength is at least 80% of the specified strength (see 14.3.3), and if no single core strength is less than 70% of the specified strength, the concrete shall be accepted.
- 14.4.3.2 If the concrete in a certain area fails to comply with 14.4.3.1 because a single core result falls below 70% of the specified strength, a further set of three cores may be taken from the same area, to determine the extent of deficient concrete. If the new set of three cores complies with the requirements of 14.4.3.1, the area represented by this second set of cores shall be considered acceptable. If the new set of cores fails to comply with the requirements of 14.4.3.1, 14.4.3.3 applies.
- 14.4.3.3 If the concrete does not meet the acceptance criteria of 14.4.3.1 or 14.4.3.2, the following should be considered in relation to the deficient part of the structure:
 - a) strength requirements for the member(s);
 - b) performance of a full scale load test as in clause 15
 - strengthening of the deficient part of the structure;
 - d) removal and replacement of the deficient part of the structure
- 8.4 The acceptance criteria given above are based on internationally accepted norms and make allowance for the fact that concrete is specified on the compressive strength of cubes. Cubes give an indication of the potential strength of concrete as mixed, made and cured under standard conditions. The strength of a core is subject to the practical differences associated with the achievement of the cube strength under site conditions and hence the lower strength limits allowed in paragraph 14.4.3 of SABS 0100-2: Edition 2.2:2000.

RJL RAW

B Tech (Civil Eng)

Mmar

Page 3 of 4

This report and any Annexuras shall not be reproduced, except in full, without the written approval of Contest

	ANNEXURE A					
Client		Jeffares & Gree	n			
Project	Not Given					
Job Number		CJ 14/081018				
Date Cast		Not Given				
Date Tested		23.08.2014				
Age, Day		Not Given				
Date Received		15.08.2014				
Direction of Drilling		Not Given				
Report date		27.08.2014				
Client Reference	BHT5 29.37m-29.70m	BHT5 101.17m-101.41m	BHT5 120.99m-121.31m			
Contest Reference	1018/1	1018/2	1018/3			
DIMENSIONS			1 20000000			
Max length (mm)	340	250	330			
Min length (mm)	336	245	328			
Diameter (mm)	47.26	47.19	47.13			
Trim Length (mm)	47.25	47.19	47.12			
Capped length (mm)	47.25	47.19	47.12			
Trim length/diameter	1.00	1.00	1.00			
Cap length/diameter	1.00	1.00	1.00			
REINFORCEMENT	Steel 1	Steel 1	Steel 1			
Dist. from end (mm)	0.0	0.0	0.0			
Diameter (mm)	0.0	0.0	0.0			
Mass (g)	0.0	0.0	0.0			
111235 (9)	Steel 2	Steel 2	Steel 2			
Dist. from end (mm)	0.0	0.0	0.0			
Diameter (mm)	0.0	0.0	0.0			
Mass (g)	0.0	0.0	0.0			
DENSITY						
Mass in air (g)	208	225	217			
Density (kg/m3)	2541	2745	2648			
Air Voids %	0.00	0.00	0.00			
CORRECTIONS	200 100 100	20.0000	120 2 1800			
Length	1.00	1.00	1.00			
Steel reinforcement	1.00	1.00	1.00			
Air voids	1.00	1.00	1.00			
LOADING						
Load at failure (kN)	213.6	227.5	318.4			
Failure mode	normal	normal	normal			
STRENGTH (MPa)						
Uncorrected Strength	121.7	130.1	182.5			
Length corrected	121.7	130.1	182.5			
Length/Steel corrected	121.7	130.1	182.5			
Length/Voids/Steel corrected	121.7	130.1	182.5			

SABS 0100-2, Clause 14.4.2, states that: "At least THREE representative cores shall be taken from each member or predetermined volume of concrete in locations that are considered potentially deficient." If the core strengths given in this report are to be used for acceptance in accordance with SABS 0100-2 (or any other specification with similar requirements to those of SABS 0100-2) then the requirements must be complied with otherwise, acceptance based on core strengths using the results given in this report, cannot be made.

Millan

RJL RAW B Tech (Civil Eng)

E2:

PETROGRAPHIC AND X-RAY DIFFRACTION ANALYSES

Faculty of Natural &
Agricultural Sciences
XRD & XRF Facility
Department of Geology
Pretoria 0002, South Africa

Direct Telephone: (012) 420-2722 Direct Telefax: (012) 362 5219 E-Mail: wiebke.grote@up.ac.za http://www.up.ac.za/academic/science

CLIENT: Jeffares & Green (Pty) Ltd

DATE: 15 September 2014

SAMPLES: 8 Samples

YOUR REFERENCE: 2819: LALENI DAM &TUNNEL

ANALYSIS: XRD and petrographic investigation of 8 core samples

TEST CONDUCTED

8 x Thin sections, 8 x XRD

After crushing and sampling with a riffle splitter, the representative samples were milled in a tungsten carbide vessel and prepared for XRD analysis using a back loading preparation method for qualitative & quantitative XRD.

The samples were analyzed using a PANalytical X'Pert Pro powder diffractometer with X'Celerator detector and variable divergence- and receiving slits with Fe filtered Co-Kα radiation. The phases were identified using X'Pert Highscore plus software.

One thin section of each sample was prepared and investigated under the microscope.

MACROSCOPIC DESCRIPTION:

Q2 6.24-6.36; T2 57.5-57.58; T4 97.23-97.31 and T4 115.97-116.06. Massive and fine grained medium grey intrusive igneous rock with a distinct dolerite/basalt texture.

D3 3.61-3.75; T2 50.63-50.77; T4 96.04-96.13 and T5 112.77-113.22. Dense, finely laminated, and very fine grained, light grey meta-sedimentary rocks (weakly metamorphosed siltstone).

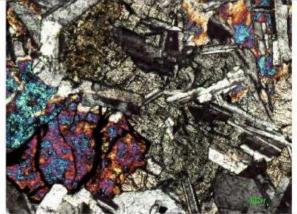
MICROSCOPIC DESCRIPTION:

Thin Section Description:

Sample name: Q2 6.24-6.36

Constituents:

Fine grained euhedral lath-shaped plagioclase crystals (~56%) intergrown by clinopyroxene/diopside (~31%). Lesser quartz (~5%), muscovite (~6%) and minor hornblende (~2%) are present. Traces of opaque minerals might be present.


Description:

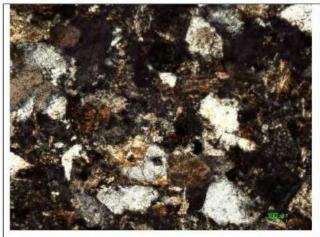
The section is dominated by generally lath-shaped fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (diopside). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. The degree of alteration is relatively low. Hornblende and mica (muscovite) might be alteration products.

Grain size data: 100 - 800 micron

Photomicrograph Q2 6.24-6.36: Cross polarized light. 10x Magnification.

Photomicrograph Q2 6.24-6.36: Cross polarized light. 10x Magnification.

Sample name: D3 3.61-3.75


Constituents:

Fine grained quartz (\sim 48%), plagioclase (\sim 22%), microcline (\sim 8%), muscovite (\sim 7%), chlorite (\sim 8%) and laumontite (\sim 7%).

Description:

The section is dominated by angular to subrounded quartz, plagioclase and microcline embedded in a fine groundmass. The presence of the zeolite laumontite seems to be diagenetic (low grade metamorphism).

Grain Size: 100 - 500 micron

Photomicrograph **D3 3.61-3.75**: Cross polarized light. 10x Magnification.

Photomicrograph **D3 3.61-3.75**: Cross polarized light. 10x Magnification.

Sample name: T2 50.63-50.77

Constituents:

Extremely fine grained quartz (~42%), plagioclase (~19%), muscovite (~17%), microcline (~9%) chlorite (~9%) and laumontite (~4%).

Description:

The sample is extremely fine grained. Optical study is hampered by the fine grain and is difficult to distinguish between the various minerals.

Grain Size: <100 micron

Photomicrograph **T2 50.63-50.77**: Cross polarized light. 10x Magnification.

Photomicrograph **T2 50.63-50.77:** Cross polarized light. 10x Magnification.

Sample name: T2 57.5-57.58

Constituents:

Fine grained euhedral lath-shaped plagioclase crystals (~49%) intergrown by clinopyroxene/diopside (~18%) and enstatite/orthopyroxene (~13%). Lesser quartz (~7%), orthoclase (~5%), hornblende (~5%) and minor muscovite/mica (~3%) are present. Traces of opaque minerals might be present.

Description:

The section is dominated by generally lath-shaped fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (diopside). The laths of plagioclase are randomly orientated and the diopside occupies a more interstitial position to the plagioclase. The amphibole/hornblende and mica might be alteration products.

Grain size data: 100 - 1000 micron

Photomicrograph **T2 57.5-57.58**: Cross polarized light. 10x Magnification.

Photomicrograph **T2 57.5-57.58:** Cross polarized light. 10x Magnification.

Sample name: T4 96.04-96.13

Constituents:

Very fine grained quartz (~36%), plagioclase (~19%), muscovite (~19%), microcline (~9%), chlorite (~11%) and laumontite (~5.5%)

Description:

The sample is very fine grained. Optical study is hampered by the fine grain and is difficult to distinguish between the various minerals.

Grain size data: <200 micron

Photomicrograph **T4** 96.04-96.13: Cross polarized light. 10x Magnification.

Photomicrograph **T4** 96.04-96.13: Cross polarized light. 10x Magnification.

Sample name: T4 97.23 - 97.31

Constituents:

Fine grained euhedral lath-shaped plagioclase crystals (~33%) intergrown by clinopyroxene/diopside (~31%). Lesser orthoclase (~12%), prehnite (~13%) quartz (~6%), actinolite/amphibole (~4%) and minor epidote (~1%) are present. Traces of opaque minerals might be present.

Description:

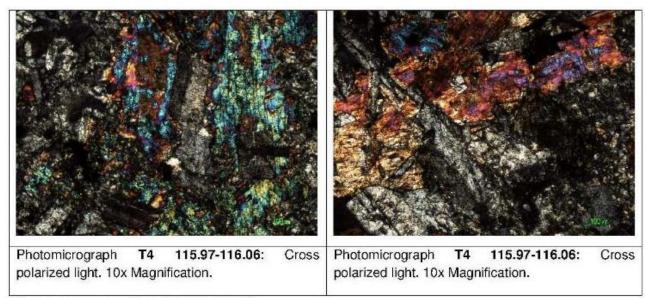
The section is dominated by generally lath-shaped fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (diopside). The laths of plagioclase are randomly orientated and the clinopyroxenes (diopside) occupy a more interstitial position to the plagioclase.

Grain size data: 100 - 1000 micron

Photomicrograph **T4 97.23-9.31**: Cross polarized light, 10x Magnification.

Photomicrograph **T4 97.23-9.31:** Cross polarized light. 10x Magnification.

Sample name: T4 115.97-116.06


Constituents:

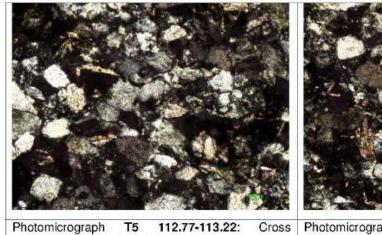
Fine grained euhedral lath-shaped plagioclase crystals (~51%) intergrown by clinopyroxene/diopside (~25%) and microcline (~9%). Lesser quartz (~4%), muscovite (~5%), hornblende (~4%) and about 2% opaque minerals (ilmenite) is present.

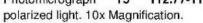
Description:

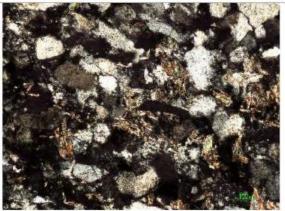
The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the diopside occupy a more interstitial position to the plagioclase. The hornblende and muscovite (mica) might be alteration products. The degree of alteration is quite low.

Grain size data: 100 - 1000 micron

Sample name: T5 112.77-113.22


Constituents:


Fine grained plagioclase crystals (~40%), quartz (~38%), microcline (~9%), muscovite (~7%) and lesser chlorite (~6%).


Description:

The section is dominated by angular to subrounded quartz, plagioclase and microcline embedded in a fine groundmass. No laumontite was detected in this sample.

Grain size data: 100 – 300 micron

Photomicrograph **T5 112.77-113.22:** Cross polarized light. 10x Magnification.

The overall bulk composition of the sample estimated by **quantitative XRD** analysis using the Rietveld method is as follows (3 σ error = standard deviation):

D3_3.61- 3.75			Q2_6.24- 6.36			T2_50.63- 50.77		
	weight%	3 σ error		weight%	3 σ error		weight%	3 σ error
Chlorite	8.44	1.11	Diopside	31.42	0.95	Chlorite	9.4	0.87
Laumontite	6.64	1.35	Hornblende	1.84	0.9	Laumontite	3.67	1.14
Microcline	7.98	1,11	Muscovite	5.63	0.72	Microcline	9.1	0.99
Muscovite	6.92	0.81	Plagioclase	56.31	1.11	Muscovite	17.35	0.87
Plagioclase	21.66	1.14	Quartz	4.8	0.33	Plagioclase	18.95	1.21
Quartz	48.36	1.44				Quartz	41.54	1.06
T2_57,5- 57.58			T4_96.04- 96.13			T4_97.23- 97.31		
	weight%	3 σ error		weight%	3 σ error		weight%	3 σ error
Diopside	18.22	0.9	Chlorite	11.3	1.02	Actinolite	4.25	0.54
Enstatite	12.86	0.96	Laumontite	5.49	1.04	Diopside	30.81	0.93
Hornblende	5.35	0.6	Microcline	8.92	0.99	Epidote	1.03	0.54
Muscovite	2.72	0.57	Muscovite	19.45	0.9	Orthoclase	11.9	0.9
Orthoclase	4.82	0.75	Plagioclase	19.16	1.2	Plagioclase	32.92	1.08
Plagioclase	49.03	1.02	Quartz	35.68	1.08	Prehnite	12.64	0.81
Quartz	7	0.36				Quartz	6.45	0.39
T4_115.97- 116.06			T5_112.77- 113.22					
	weight%	3 σ error		weight%	3 σ error			

Diopside	25.07	1.29	Chlorite	5.59	0.72		
Hornblende	3.92	1.05	Laumontite	0	0		- 35 - 35
Ilmenite	1.99	0.9	Microcline	8.98	0.99		
Microcline	8.94	0.87	Muscovite	6.95	0.72		- Compression and a succession as a succession
Muscovite	4.63	0.66	Plagioclase	40.47	1.17		
Plagioclase	51.11	1.62	Quartz	38	0.96		
Quartz	4.34	0.39			_	98	

Ideal Mineral Composition:

Actinolite Ca2(Mg,Fe)5Si8O22(OH)
Chlorite (Mg,Fe)5Al(AlSi3O10)(OH)8

Diopside CaMgSi2O6 Enstatite MgSiO3

Epidote Al2Ca2MnSi3O12 (OH)

Hornblende Ca2(Fe,Mg)4Al(Si7Al)O22(OH,F)2

Ilmenite FeTiO3

Laumontite CaAl2Si4O12(H2O)2

Microcline KAISi3 O8

Muscovite KAI2((OH)2AISi3O10)

Orthoclase KAISi3O8

Plagioclase (Na,Ca)(Si,Al)4O8 Prehnite Ca2Al(AlSi3O10)(OH)2

Quartz SiO2

EXECUTIVE SUMMARY:

- Samples Q2 6.24-6.36; T2 57.5-57.58; T4 97.23-97.31 and T4 115.97-116.06 are dolerite
 or basalts. No smectite (swelling clays) was detected. The prehnite in sample T4 97.2397.31 might be secondary or a hydrothermal mineral.
- The dolerite/basalt samples appear holocrystalline, relatively fresh and fine grained with an ophitic texture and these samples seems to be fairly similar.
- Samples D3 3.61-3.75; T2 50.63-50.77; T4 96.04-96.13 and T5 112.77-113.22, vary between very fine grained to extremely fine grained. These seem to be meta-sedimentary rocks, which have undergone low grade metamorphism.

If you have any questions, kindly contact the laboratory.

Analyst:

Wiebke Grote

E3:

SAND TEST RESULTS

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342

E-mail: contest@contest.co.za Web Page: www.contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

Client: Jeffares & Green

Aggregate Testing Report Subject:

CJ14/08/1004

Project: Tsitsa River

Testing Report

CLIENT:

Ref:

Jeffares & Green (Pty) Ltd, P O Box 794, HILTON, 3245

SYNOPSIS:

Contest carried out aggregate testing on five aggregate samples received as per the client's request.

BRIEF FROM CLIENT:

Contest was requested to carry out the following test and report the results;

- Chloride Content
- Grading
- Organic Impurities
- pH
- Soluble deleterious Impurities
- Soluble Sulphates

SAMPLES:

The following sample was received on 12.08.2014.

- Sand (S1 Tsitsa River) (our lab ref1004/1)
- Sand (S2 Tsitsa River) (our lab ref 1004/2)
- Sand (S3 Tsitsa River) (our lab ref 1004/3)
- Sand (S4 Tsitsa River) (our lab ref 1004/4)
- Sand (combined S1 S4) (our lab ref 1004/5)

TESTS:

Test	Test Method
Chloride Content	SM SABS 830:1994
Grading	SM SABS 829:1994

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng), FICT, MSA Corr I

Testing, Training and Consulting in Concrete

Page 1 of 6

18 September 2014

Ref: CJ14/08/1004 18 September 2014

Client: Jeffares & Green

Subject: Aggregate Testing Report

Project: Tsitsa River

Organic Impurities	SM SABS 832:1976
pН	TMH 1 Method A 20
Soluble Deleterious Impurities	SABS SM 834:1996
Soluble Sulphates	Gravimetric

RESULTS:

See attached Appendix A for results

COMMENT:

Chloride Content:

The test results of the sample tested meets the requirements of SANS 1083:2006 which are given below;

Chloride Content, expressed as Cl ⁻ , mass percentage, max.	Type of Concrete;	SABS (mass %, as Cl') of sand	BS (mass %, as Cl') of combined aggregate:
	Concrete for pre-stressing: Concrete made with supersulphated and	0.01	0.01
	sulphated resisting cement	-	0.03
	Normal reinforced	0.03	0.05
	concrete:	Services	- 00
	Non-reinforced concrete:	0.08	

The SABS limits are based on the mass of sand used, the BS limit on the total aggregate. The aggregate tested met the SABS requirements and would meet the BS limits for most concrete mixes.

Organic Impurities:

The colour of the test solution made with the aggregate sample (1004/5) was similar in colour than that of the colour depth comparator. The sample is therefore unlikely to have a sufficient quantity of visible organic impurities to negatively affect concrete setting times or compressive strength.

<u>pH:</u>

Typical values for aggregates are between 6.5 and 10. The aggregate tested met these requirements.

Soluble Deleterious Impurities:

The test method used was SABS 834:1994 except that instead of testing cubes at 7 days only, additional cubes were made for 28d testing in case any results at 7d proved to be suspect. Compressive strength of cubes at 24 hours and 3 days was carried out to determine any early age effect on the concrete strength.

The results relate only to the items tested

Ref: CJ14/08/1004 18 September 2014

Client: Jeffares & Green

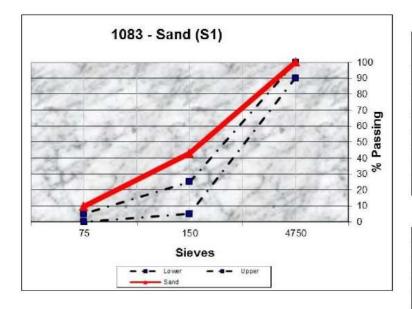
Subject: Aggregate Testing Report

Project: Tsitsa River

SABS 1083 requires that the strength developed at 7 days by the cubes made with the unwashed sand must be at least 85% of the cubes made with the washed aggregate.

The test sample met this requirement, giving a result of 97.5 %.

Soluble Sulphates:


The commentary on SABS 1083:1994 states that it is difficult to define a limit to the level of sulphate or sulphide that can be regarded as tolerable in aggregate.

SABS 0100-2:1990 limits the total water-soluble sulphate content of concrete to 4% of the mass of cement.

The test results given above for the sample tested would be within this limit for most concrete mixes.

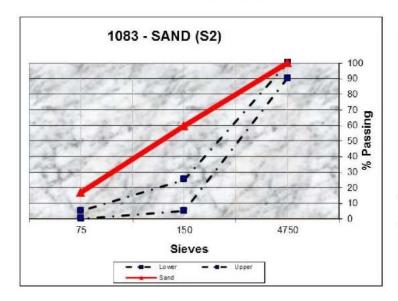
Gradings:

The sand did not meet the grading requirements for SANS 1083:2006.

Sieve Size	Cumulative % passing		
(mm)	Limits	Sample	
6.7		100	
4.750	90 - 100	100	
2.360		100	
1.180		100	
0.600		100	
0.300		99	
0.150	5 - 25	43	
0.075	0 - 5*	9.5	

* 0 - 10 crushed rock

RD	0.00
LBD	0
CBD	0
FM	0.58
VOIDS	#DIV/0!

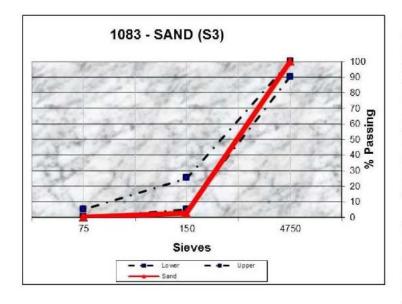

Ref: CJ14/08/1004 18 September 2014

Client: Jeffares & Green

Subject: Aggregate Testing Report

Project: Tsitsa River

The sand did not meet the grading requirements for SANS 1083:2006.



Sieve Size	Cumulative % passing			
(mm)	Limits	Sample		
6.7		100		
4.750	90 - 100	100		
2.360		100		
1.180		100		
0.600		100		
0.300		99		
0.150	5 - 25	60		
0.075	0 - 5*	16.9		

* 0 - 10 crushed rock

RD	0,00
LBD	0
CBD	0
FM	0.42
VOIDS	#DIV/0!

The sand met the grading requirements for SANS 1083:2006, except for the 0.150mm sieve size.

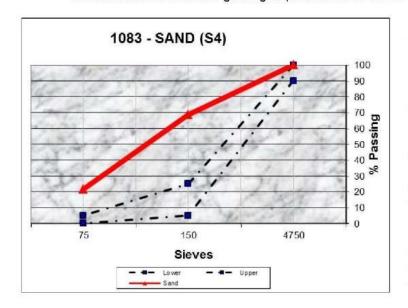
Sieve Size	Cumulative	Cumulative % passing			
(mm)	Limits	Sample			
6.7		100			
4.750	90 - 100	100			
2.360		99			
1.180		97			
0.600		93			
0.300		69			
0.150	5 - 25	3			
0.075	0 - 5*	0.2			

* 0 - 10 crushed rock

RD	0.00
LBD	0
CBD	0
FM	1.39
VOIDS	#DIV/0!

Page 4 of 6

The results relate only to the items tested

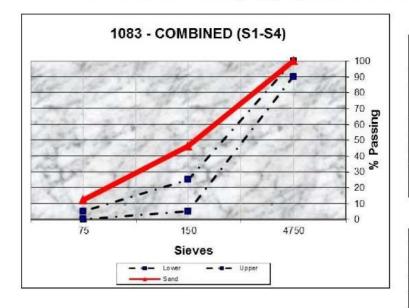

Ref: CJ14/08/1004 18 September 2014

Client: Jeffares & Green

Subject: Aggregate Testing Report

Project: Tsitsa River

The sand did not meet the grading requirements for SANS 1083:2006.



Sieve Size	Cumulative % passing			
(mm)	Limits	Sample		
6.7		100		
4.750	90 - 100	100		
2.360		100		
1.180		100		
0.600		100		
0.300		100		
0.150	5 - 25	68		
0.075	0 - 5*	21.6		

* 0 - 10 crushed rock

RD	0.00	
LBD	0	
CBD	0	
FM	0.32	
VOIDS	#DIV/0!	

The sand did not meet the grading requirements for SANS 1083:2006.

Sieve Size	Cumulative % passing		
(mm)	Limits	Sample	
6.7		100	
4.750	90 - 100	100	
2.360		100	
1.180		99	
0.600		99	
0.300		93	
0.150	5 - 25	46	
0.075	0 - 5*	12.2	

* 0 - 10 crushed rock

RD	0.00
LBD	0
CBD	0
FM	0.63
VOIDS	#DIV/0!

Page 5 of 6

FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT

GEOTECHNICAL INVESTIGATIONS: LALINI DAM AND HYDROPOWER SCHEME: APPENDICES

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ14/08/1004 18 September 2014

Client: Jeffares & Green

Subject: Aggregate Testing Report

Project: Tsitsa River

R J L Raw

B Tech (Civil Eng)

Mman

CONTEST CONCRETE TECHNOLOGY SERVICES

Client: Jeffares & Green				Sample	e number	
	1004/1	1004/2	1004/3	1004/4	1004/5	
Job no. CJ14/08/1004				Name of the last o		
	S1	\$2	53.	54	COMBINED (\$1 \$4)	
Tests		Aggregates				
Chloride content (%)	C#C		-	1 1	0.01	
Grading	See report	See report	See report	See report	See report	
Organic impurities			-	-	similar to reference	
pH	19	40		121	7.86	
Soluble deleterious impurities	2	4		20	see below	
Soluble sulphates (mg/ℓ)		(2)	325	32	<10	

Soluble deleterious impurities

Sample	Age	Unwashed	Washed	Unwashed as a % of washed
	24hr	1.5	1.5	100
Combined Sand	3d	4.4	5.0	88
	7d	7.8	8.0	97.5
	28d	13,300	1022	

RJLRAW

B Tech (Civil Eng)

MMan

E4:

INDICATOR AND COMPACTION TESTING - CORE AND SHELL MATERIALS

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Client Reference :

Order No.

Civil Engineering Testing Laboratories

Jaco Oliver

Client : JEFFARES & GREEN CONSULTING ENGINEERS

Address : P O BOX 1109

: SUNNINGHILL

2157

Attention : Date Received : 12/08/2014

Project : Mzimvubu Water Project

Project No. : 2014-B-1687

Page : 1 of 14

Herewith please find the test report(s) pertaining to the above project. All tests were conducted in accordance with prescribed test method(s). Information herein consists of the following:

Test(s) conducted / Item(s) measured	Qty.	Test Method(s)	Authorized By	Page(s)
Atterberg Limits < 0.425mm	22.000	TMH1 A2, A3, A4	J Marques	2-12
Sieve Analysis 0.075mm (Mass Grading)	22.000	TMH1 A1	J Marques	2-12
Hydrometer Analysis	22.000	ASTM D422	J Marques	2-12
MDD & OMC	2.000	TMH1 A7	J Marques	13-14

Any test results contained in this report and marked with * in the table above are "not SANAS accredited" and are not included in the schedule of accreditation for this laboratory.

Any information contained in this test report pertain only to the areas and/or samples tested. Documents may only be reproduced or published in their full contact

While every care is taken to ensure that all tests are carried out in accordance with recognised standards, neither Civilab (Proprietary) Limited nor its employess shall be liable in any way whatsoever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequences thereof.

All interpretations, Interpolations, Opinions and/or Classifications contained in this report falls outside our scope of accreditation.

The following parameters, where applicable, were excluded from the classification procedure: Chemical modifications, Additional fines, Fractured Faces, Soluble Salts, pH, Conductivity, Coarse Sand Ratio, Durability (COLTO: G4-G9).

The following parameters, where applicable, were assumed: Rock types were assumed to be of an Arenaceous nature with Siliceous cementing material

Unless otherwise requested or stated, all samples will be discarded after a period of 3 months.

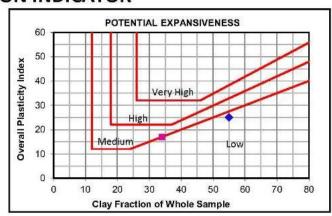
Deviations in Test Methods:

Civilab (Proprietary) Limited. Registration No: 1998/019071/07

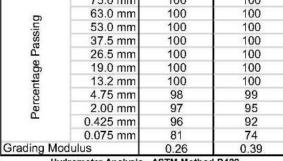
PO Box 82223, Southdale 2135

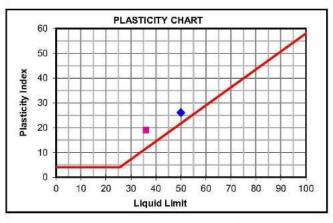
Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories


JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 12/08/2014 Project Mzimvubu Water Project Date Reported: 22/09/2014 2014-B-1687 Page No. Project No 2 of 14


FOUNDATION INDICATOR

Laboratory Nun	nber	1 •	2
Field Number		CTP 1	CTP 2
Client Reference	е	220000000000000000000000000000000000000	
Depth (m)		1.1-2.4	1.0-1.9
Position			
Coordinates	X		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Ager	ıt		

Moisture Co	intent (%)		
Relative Der	nsity (S.G.)		
Sieve Ana	alysis (Wet Preparat	ion) - TMH1 M	ethod A1(a)
Вu	75.0 mm	100	100
	63.0 mm	100	100
	53.0 mm	100	100

Hyd	Irometer Analysis -	ASTM Method	D422
e	0.060 mm	78	71
ng fa	0.040 mm	74	65
Passing	0.020 mm	67	56
ည် အ	0.006 mm	58	41
P. T.	0.002 mm	55	34
Gravel	%	3	5
Sand	%	19	24
Silt	%	23	37
Clay	%	55	34

Laboratory Number		1 🔷	2
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	50	36
Plasticity Index	%	26	19
Linear Shrinkage	%	12.0	9.5
Overall PI	%	25	17
	Classifi	cations	

A-7-6(20)

Unified CH CL Weston Swell @ 1 kPa 100 80 Percentage Passing 60 40 20 0.1 100 Fine Medium Coarse Fine Medium Coarse Medium Coarse Clay Silt Gravel

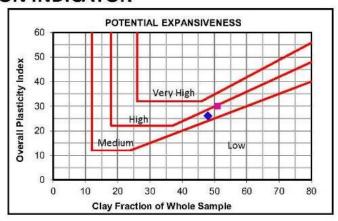
HRB

A-6(12)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

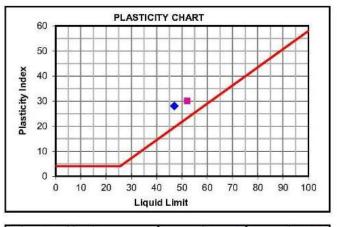


Civil Engineering Testing Laboratories

Client	•	JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project		Mzimvubu Water Project	Date Reported:	22/09/2014
Project No	1	2014-B-1687	Page No. :	3 of 14

FOUNDATION INDICATOR

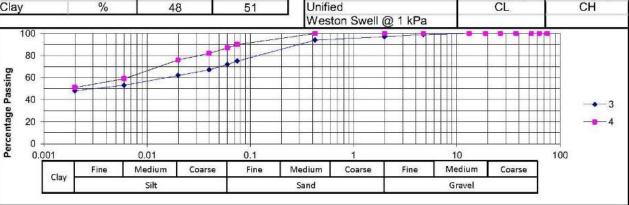
Laboratory Number		3 🔷	4
Field Number		CTP 2	CTP 3
Client Reference	е		
Depth (m)		1.9-2.8	0.8-2.5
Position			
Coordinates	X		
Description			
Aditional Information			
Calcrete / Crusl	ned		
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
	63.0 mm	100	100
Ë	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
ita i	13.2 mm	100	100
Ser	4.75 mm	99	100
Percentage	2.00 mm	97	100
Δ.	0.425 mm	94	100
	0.075 mm	75	90
Grading Mo	odulus	0.34	0.1
LI.	duamatan Amalunia	ACTH Mathad	D422

Hyd	Irometer Analysis -	ASTM Method	D422
ā	0.060 mm	72	87
rag ng	0.040 mm	67	82
Percentage Passing	0.020 mm	62	76
	0.006 mm	53	59
	0.002 mm	48	51
Gravel	%	3	
Sand	%	25	13
Silt	%	24	36
Clay	%	48	51

Laboratory Number	J. D.	3 🔷	4
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	47	52
Plasticity Index	%	28	30
Linear Shrinkage	%	12.5	12.5
Overall PI	%	26	30
	Classifi	cations	

A-7-6(20)

HRB

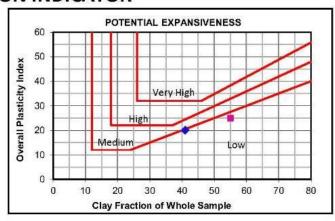
A-7-6(20)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

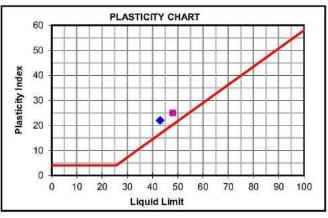

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 12/08/2014

Project : Mzimvubu Water Project Date Reported: 22/09/2014

Project No : 2014-B-1687 Page No. : 4 of 14

FOUNDATION INDICATOR

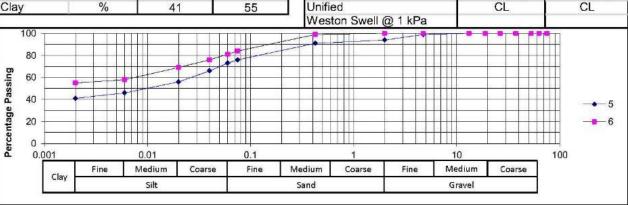
Laboratory Number		5 🔷	6 📕
Field Number		CTP 4	CTP 4
Client Reference	е		
Depth (m)		0.4-1.0	1.0-1.8
Position			
Coordinates	X		
Description			
Aditional Inform	ation		
Calcrete / Crush	ned		
Stabilizing Agen	t		


Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)

Sieve Applysis (Wet Preparation) - TMH1 Method A1(a)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
-50	63.0 mm	100	100
Ë	53.0 mm	100	100
assing	37.5 mm	100	100
σ.	26.5 mm	100	100
ercentage	19.0 mm	100	100
韋	13.2 mm	100	100
ē	4.75 mm	99	100
ē	2.00 mm	94	100
₫.	0.425 mm	91	99
	0.075 mm	76	84
Grading Mo	dulus	0.39	0.17

Hyd	Irometer Analysis -	ASTM Method	D422
ē	0.060 mm	73	81
ng fa	0.040 mm	66	76
en	0.020 mm	56	69
Percentage Passing	0.006 mm	46	58
Pe	0.002 mm	41	55
Gravel	%	6	
Sand	%	21	19
Silt	%	32	26
Clay	%	41	55

Laboratory Number		5 🔷	6
	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	43	48
Plasticity Index	%	22	25
Linear Shrinkage	%	9.5	10.5
Overall PI	%	20	25
	Classific	cations	

A-7-6(16)

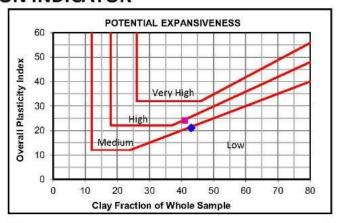
HRB

A-7-6(20)

PO Box 82223, Southdale 2135

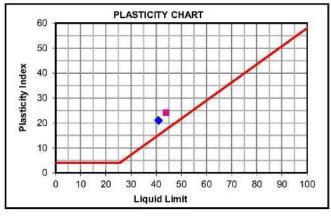
Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

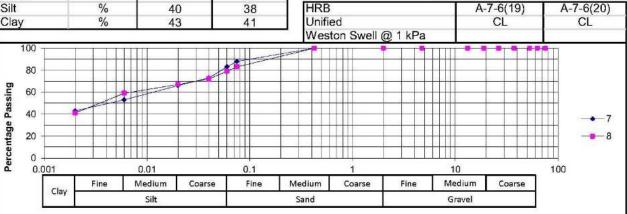


Civil Engineering Testing Laboratories

JEFFARES & GREEN CONSULTING ENGINEERS Client Date Received: 12/08/2014 Mzimvubu Water Project Date Reported: 22/09/2014 Project 2014-B-1687 Project No Page No. 5 of 14


FOUNDATION INDICATOR

Laboratory Number		7 •	8
Field Number		CTP 5	CTP 6
Client Reference	e		
Depth (m)		1.1-2.5	1.0-2.7
Position			
Coordinates	X		
Description			
Aditional Inform	ation		
Calcrete / Crusi	hed		
Stabilizing Ager	nt		


IMOISTURE CO			
Relative Der	nsity (S.G.)		
Sieve Ana	alysis (Wet Preparat	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
(1000)	63 0 mm	100	100

Hyd	Irometer Analysis -	ASTM Method	D422
ō	0.060 mm	83	79
Percentage Passing	0.040 mm	73	72
	0.020 mm	66	67
	0.006 mm	53	59
	0.002 mm	43	41
Gravel	%		
Sand	%	17	21
Silt	%	40	38
Clay	%	43	41

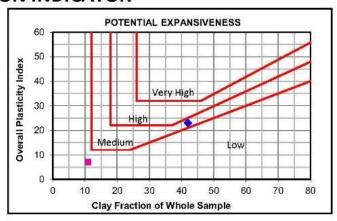
Laboratory Number		7 🔷	8
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	41	44
Plasticity Index	%	21	24
Linear Shrinkage	%	8.0	11.5
Overall PI	%	21	24
	Classific	a dia wa	

HRB

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

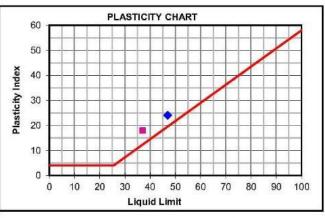


Civil Engineering Testing Laboratories

Client		JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project	:	Mzimvubu Water Project	Date Reported:	22/09/2014
Project No	ī.	2014-B-1687	Page No. :	6 of 14

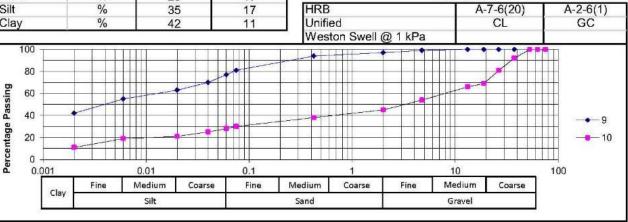
FOUNDATION INDICATOR

Laboratory Nun	nber	9 🔷	10
Field Number		CTP 7	FTP 1
Client Reference	e		
Depth (m)		0.7-2.5	0.2-0.7
Position			
Coordinates	X		
Coordinates	Υ		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)


Relative Density (S.G.)

Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
C	63.0 mm	100	100
Ë	53.0 mm	100	100
Passing	37.5 mm	100	92
9	26.5 mm	100	81
ge	19.0 mm	100	69
ercentage	13.2 mm	100	66
ē	4.75 mm	99	54
er	2.00 mm	97	45
₫.	0.425 mm	94	38
	0.075 mm	81	30
Srading Mo	dulus	0.28	1.87

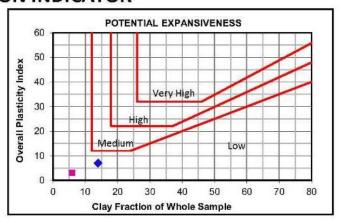
Нус	Irometer Analysis -	ASTM Method	D422
ā	0.060 mm	77	28
Percentage Passing	0.040 mm	70	25
en	0.020 mm	63	21
2 %	0.006 mm	55	19
P. T.	0.002 mm	42	11
Gravel	%	3	55
Sand	%	20	17
Silt	%	35	17
Clay	%	42	11

	9 🔷	10
imits - TMH	1 Method A2, A3	& A4
%	47	37
%	24	18
%	10.5	9.5
%	23	7
	% % %	% 24 % 10.5

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

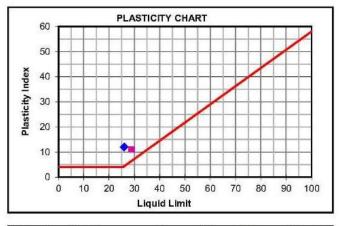


Civil Engineering Testing Laboratories

Client	:	JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project	:	Mzimvubu Water Project	Date Reported:	22/09/2014
Project No		2014-B-1687	Page No. :	7 of 14

FOUNDATION INDICATOR

Laboratory Number		11 🔷	12
Field Number		FTP 3	FTP 4
Client Reference	e		0.0000000000000000000000000000000000000
Depth (m)		1.0-1.6	0.2-0.9
Position			
Coordinates	X		
Description			
Aditional Inform	nation		
Calcrete / Crushed		1	
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)

Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
C D	63.0 mm	100	94
Ę.	53.0 mm	98	90
assing	37.5 mm	93	81
Δ.	26.5 mm	86	67
ge	19.0 mm	77	54
5	13.2 mm	77	51
Ser	4.75 mm	68	38
Percentage	2.00 mm	61	33
ш	0.425 mm	55	30
	0.075 mm	49	16
Grading Mo	dulus	1.35	2.21

Нус	drometer Analysis -	ASTM Method	D422
e e	0.060 mm	41	15
lag ng ng	0.040 mm	30	13
ssi	0.020 mm	26	11
Percentage Passing	0.006 mm	20	9
	0.002 mm	14	6
Gravel	%	39	67
Sand	%	20	18
Silt	%	27	9
Clay	%	14	6

Laboratory Number	80	11 🔷	12
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	26	29
Plasticity Index	%	12	11
Linear Shrinkage	%	6.0	6.0
Overall PI	%	7	3
	Classific	eations	

A-6(3)

Unified GC GC Weston Swell @ 1 kPa 100 80 Percentage Passing 60 40 20 0 0.001 0.01 Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse Clay Gravel

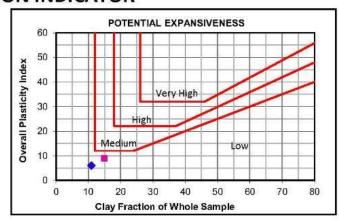
HRB

A-2-6(0)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

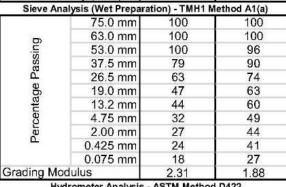
E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

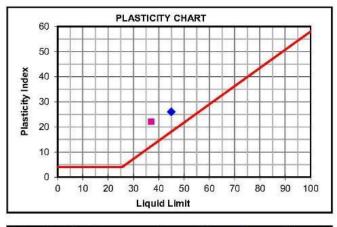


Civil Engineering Testing Laboratories

Client	ě	JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project	:	Mzimvubu Water Project	Date Reported:	22/09/2014
Project No	1	2014-B-1687	Page No. :	8 of 14

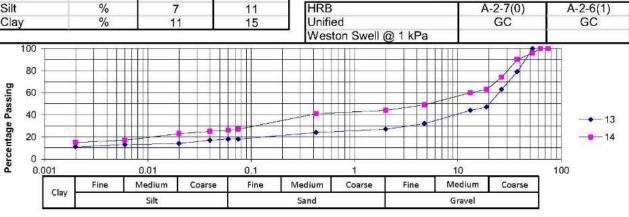
FOUNDATION INDICATOR


Laboratory Nun	nber	13 🔷	14
Field Number		FTP 6	FTP 7
Client Reference	e		
Depth (m)		1.4-1.9	0.6-0.9
Position			
Coordinates	X		
Description			
Aditional Inform	ation		
Calcrete / Crus	hed		
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)


Relative Density (S.G.)

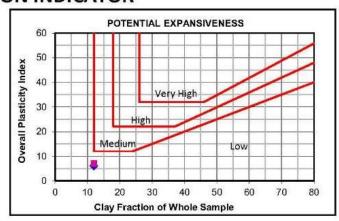
Hyd	rometer Analysis -	ASTM Method	D422
<u>a</u>	0.060 mm	18	26
lag ng pa	0.040 mm	17	25
ssi	0.020 mm	14	23
Percentage Passing	0.006 mm	13	17
	0.002 mm	11	15
Gravel	%	73	56
Sand	%	9	18
Silt	%	7	11
Clay	%	11	15

Laboratory Number		13 🔷	14
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	45	37
Plasticity Index	%	26	22
Linear Shrinkage	%	12.0	10.0
Overall PI	%	6	9
	Clacelfi	cations	

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

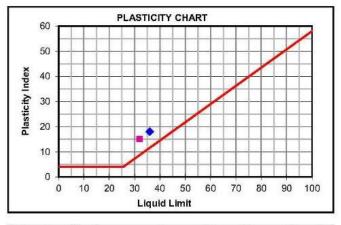


Civil Engineering Testing Laboratories

Client	•	JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project	:	Mzimvubu Water Project	Date Reported:	22/09/2014
Project No	1	2014-B-1687	Page No. :	9 of 14

FOUNDATION INDICATOR

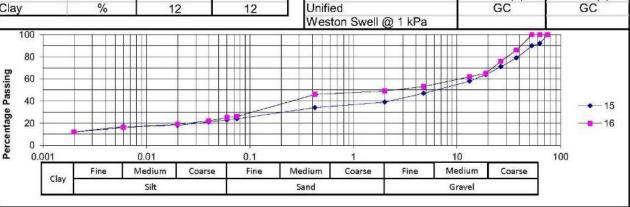
Laboratory Number		15 🔷	16
Field Number		FTP 9	FTP 10
Client Reference	e		
Depth (m)		0.4-0.6	0.2-0.6
Position			
Coordinates X			
Description			
Aditional Inform	ation		
Calcrete / Crus	hed		
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
C D	63.0 mm	92	100
. <u>E</u>	53.0 mm	90	100
Passing	37.5 mm	79	86
	26.5 mm	71	76
ge	19.0 mm	64	65
Percentage	13.2 mm	58	62
Se	4.75 mm	47	53
ē	2.00 mm	39	49
11	0.425 mm	34	46
	0.075 mm	24	26
Grading Mo	dulus	2.03	1.79

Hyd	Irometer Analysis -	ASTM Method	D422
e	0.060 mm	23	25
Passing	0.040 mm	21	22
en	0.020 mm	18	19
5 8	0.006 mm	17	16
g _	0.002 mm	12	12
Gravel	%	61	51
Sand	%	16	24
Silt	%	11	13
Clay	%	12	12

Laboratory Number		15 🔷	16
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	36	32
Plasticity Index	%	18	15
Linear Shrinkage	%	9.5	7.5
Overall PI	%	6	7
	Classific	actions	

A-2-6(1)

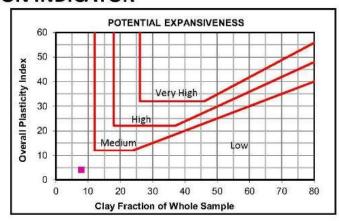
HRB

A-2-6(1)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

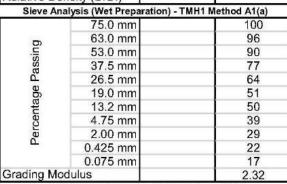
E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

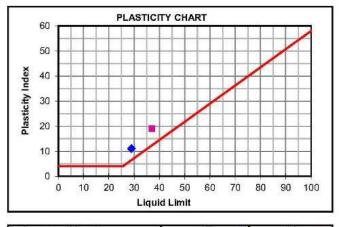


Civil Engineering Testing Laboratories

Client	1	JEFFARES & GREEN CONSULTING ENGINEERS	Date Received:	12/08/2014
Project	1	Mzimvubu Water Project	Date Reported:	22/09/2014
Project No	2	2014-B-1687	Page No. :	10 of 14

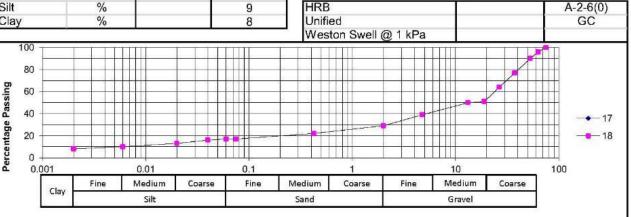
FOUNDATION INDICATOR


Laboratory Num	ber	17 🔷	18
Field Number		FTP 11	FTP 12
Client Reference)		
Depth (m)		0.2-0.7	0.3-0.6
Position			
Coordinates	X Y		
Description			
Aditional Informa	ation		
Calcrete / Crush	ed		
Stabilizing Agen	t		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)


Relative Density (S.G.)

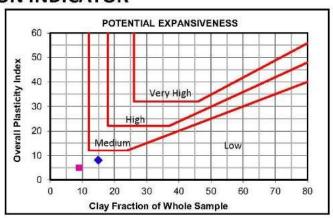
Hyd	Irometer Analysis - ASTM Me	ethod D422
<u>a</u>	0.060 mm	17
rag ng	0.040 mm	16
ssi	0.020 mm	13
Passing	0.006 mm	10
g _	0.002 mm	8
Gravel	%	71
Sand	%	12
Silt	%	9
Clay	%	8

Laboratory Number		17 🔷	18
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	29	37
Plasticity Index	%	11	19
Linear Shrinkage	%	5.5	10.0
Overall PI	%	8	4
	Classific	ations	

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

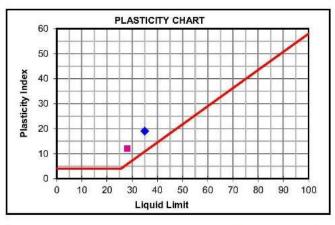
E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories

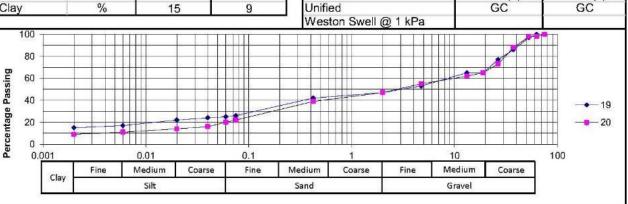
Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 12/08/2014
Project : Mzimvubu Water Project Date Reported: 22/09/2014
Project No : 2014-B-1687 Page No. : 11 of 14

FOUNDATION INDICATOR


Laboratory Number		19 🔷	20
Field Number		FTP 13	FTP 5
Client Reference	e		
Depth (m)		0.3-0.6	0.6-1.1
Position			
Coordinates	X		
Description			
Aditional Inform	ation		·
Calcrete / Crus	ned		
Stabilizing Ager	nt		

Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)
Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	NAME OF TAXABLE PARTY.	Maria and Maria and Maria
	75.0 mm	100	100
D	63.0 mm	100	98
Ë	53.0 mm	97	98
Passing	37.5 mm	86	88
7936	26.5 mm	77	73
Percentage	19.0 mm	65	65
	13.2 mm	65	62
	4.75 mm	53	55
e.	2.00 mm	47	47
T.	0.425 mm	42	39
	0.075 mm	26	22
Grading Modulus		1.85	1.92

Hyd	Irometer Analysis -	ASTM Method	D422
ō	0.060 mm	25	20
D G	0.040 mm	24	16
en	0.020 mm	22	14
Passing	0.006 mm	17	11
9 T	0.002 mm	15	9
Gravel	%	53	53
Sand	%	22	27
Silt	%	10	11
Clay	%	15	9

Laboratory Number		19 🔷	20
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	35	28
Plasticity Index	%	19	12
Linear Shrinkage	%	9.5	6.5
Overall PI	%	8	5
	Classific	cations	

A-2-6(1)

HRB

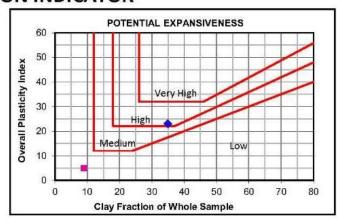
A-2-6(0)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

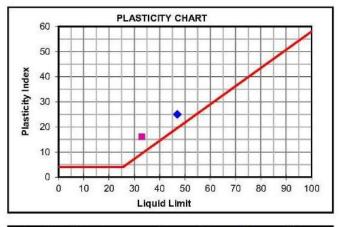

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 12/08/2014

Project : Mzimvubu Water Project Date Reported: 22/09/2014

Project No : 2014-B-1687 Page No. : 12 of 14

FOUNDATION INDICATOR

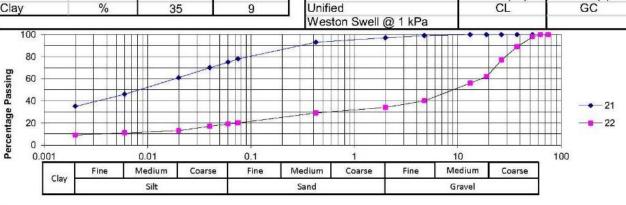
Laboratory Number		21 🔷	22
Field Number		CTP :Mix	FTP :Mix
Client Reference	e		
Depth (m)			
Position			
X			
Coordinates	Υ		
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
D	63.0 mm	100	100
Passing	53.0 mm	100	98
386	37.5 mm	100	89
	26.5 mm	100	77
ge	19.0 mm	100	62
韓	13.2 mm	100	56
Se	4.75 mm	99	40
Percentage	2.00 mm	97	34
	0.425 mm	93	29
	0.075 mm	78	20
Grading Modulus		0.32	2.17

		9100	
Hyd	rometer Analysis -	ASTM Method	D422
Passing	0.060 mm	75	19
	0.040 mm	70	17
ssi	0.020 mm	61	13
Pero Pa	0.006 mm	46	11
	0.002 mm	35	9
Gravel %		3	66
Sand	%	22	15
Silt	%	40	10
Clay	%	35	9

Laboratory Number	88 6	21 🔷	22
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	47	33
Plasticity Index	%	25	16
Linear Shrinkage	%	10.5	8.5
Overall PI	%	23	5
	Classifi	cations	

A-7-6(20)

HRB

A-2-6(0)

PO Box 82223, Southdale 2135

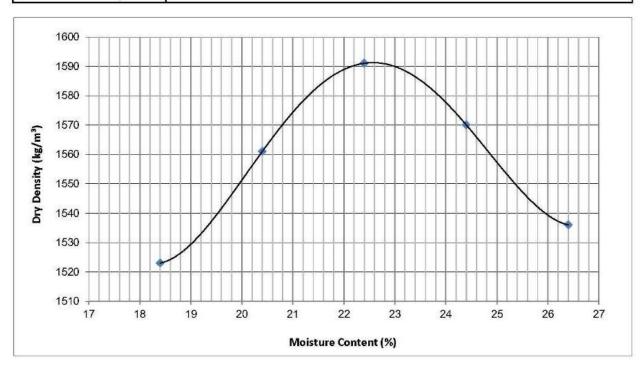
Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client: JEFFARES & GREEN CONSULTING EN Date Received: 12/08/2014
Project: Mzimvubu Water Project Date Reported: 22/09/2014
Project No: 2014-B-1687 Page No. : 13 of 14

MOISTURE DENSITY RELATIONSHIP


Laboratory Number	•	21
Field Number		CTP :Mix
Client Reference		
Depth (m)		
Position		
Coordinates	X	
Coordinates	Υ	
Description		
Additional Informati	ion	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7

THE OUTCOME	modification of the control of the c					
Compactive Effort:	Standard Proctor					

Name of the last o							
Dry Density	kg/m³	1523	1561	1591	1570	1536	
Moisture Content	%	18.4	20.4	22.4	24.4	26.4	

Max. Dry Density	kg/m³	1591
Optimum Moisture	%	22.6

PO Box 82223, Southdale 2135

Moisture Content

%

6.1

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

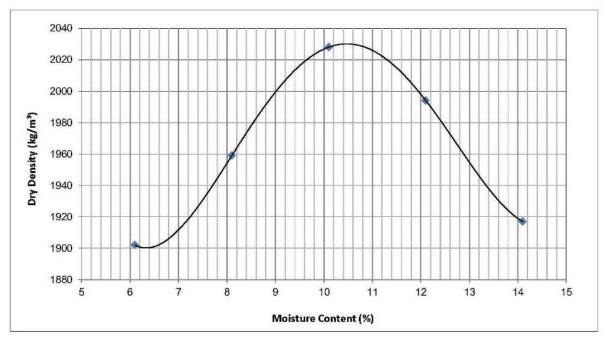
Date Received: 12/08/2014 JEFFARES & GREEN CONSULTING EN Project : Mzimvubu Water Project Date Reported: 22/09/2014 Project No: 2014-B-1687 Page No. : 14 of 14

MOISTURE DENSITY RELATIONSHIP

Laboratory Number		22
Field Number		FTP :Mix
Client Reference		
Depth (m)		
Position		
0	X	
Coordinates	Y	
Description		
Additional Informati	ion	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7 Compactive Effort: Standard Proctor Dry Density kg/m³ 1902 1959 2028 1994 1917

8.1


2030

10.1

12.1

14.1

E5:

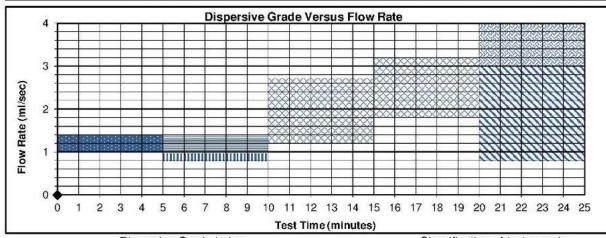
GEOTECHNICAL TESTING – CORE AND SHELL MATERIALS

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Websile: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispe	ersive Soils
-------------------------------	--------------


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	1687-21
Job Number	2014-B-1687	Client/Field No.	CTP: MIX
Date Received	20/10/2014	Depth (m)	

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0					1		180)				380				3	102	0	
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	_																							<u> </u>	
Acceptation of the Control of the Co	Syn	nbol:	P	C-Pe	rfect	ly Cle	ear	(;-(lear	SD	-Slig	htly [Park	ML)-Mo	derat	tely L	ark	D-L	Dark		VD-	Very	Dark	(

	Dispersive Grade Inde	X			
Dispersive	Intermediate Non-dispersiv				
D1 D2	IIIIII ND4 XXX ND3	SSS ND2 W ND1			

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Dispersive Grade Index
Non-dispersive Dispersive
1 2 3 4

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index
Extract from the U.S. Department of Agricultur: Soil
Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

18 (Non-Dispersive)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

Reagent used

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Falling Head Permeability Test Results

Project:	MZIMVUBU WATER PROJECT		
Project No:	2014-B-1687	Date:	21/10/2014

Lab.	Field	Depth	Moisture	Contents	Dry dens	sity Kg/m ³	Coefficier	nt of Permeat	oility (m/s)
Sample	Sample	(m)	Before	After Initial As		Ra	nge	Average	
Reference	Reference		Test (%)	Test (%)		tested	Minimum	Maximum	3.0.4.mg
1687-21	CTP:MIX	- 6	22.0	25.2	1567	1573	2.5E-08	3.0E-08	2.7E-08
cza – Akula – Akula		AGA AGA							AGA

Remarks: Sample remoulded to 98% Proctor.

Saturated and tested under a load of 100kPa. Densities reported are under a load of 100kPa.

Civilab (Pty) Limited Registration No: 1998/019071/07 BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

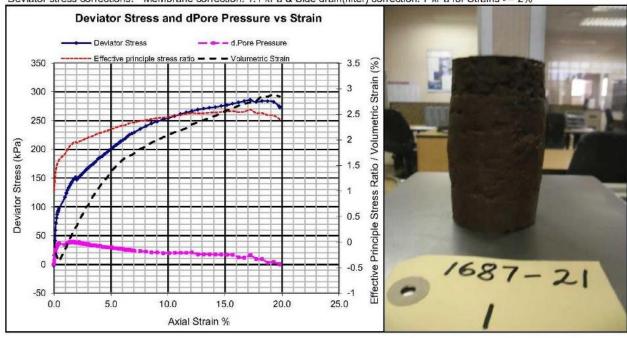
Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-21
Field Sample Number:	CTP - Mix	Depth (m):	-

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks: A Consolidated Drained teston a remoulded sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternating	ng increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.99


CONSOLIDATION DATA

Effective cons. Stress (kPa	195.4	t10	0 (minutes):	: 16	Side	Yes		
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100.81	*50.05	1967.42	24.2	1521	0.7742	84	0.000
CONSOLIDATED	99.15	49.22	1902.68	26.3	1600	0.6867	103	2.698 Determined
FINAL (After shear)	79.52	54.17	2304.94	24.5	1646	0.6396	103	Determinet
Initial pore pressure (kPa):	533.6	Fin	al pore pre	ssure (kPa):	348.9	PWP dissi	pation (%): 9	7
*: Measured dimensions; a	Il other dim	ensions are	calculated.	- 3				

SHEAR DATA

Rate of strain (%/hour):	0.50							
Initial pore pressure (kPa):	347.6	Initia	al effective stress (kPa)	: 195.4				
Parameters at failure:								
Failure Criterion: N	Max. Deviator S	tress						
Axial strain (%):	17.1	9	Volumetric strain (%)	: 2.73				
Deviator stress (kPa):	285	285.9			Principle Stresses (kPa)			
Excess pore pressure (kPa)): 15.5			σ1	σ 1'	σ3	σ3'	
Effective principle stress rat	io: 2.59	00		481.3	465.8	195.4	179.8	

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091 PO Box 82223, Southdale 2135 Tel:+27 (0)11 835 3117 E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

		The state of the s		
Triaxial	Compre	REION	ACT F	STILLS
Παλιαι	COLLIDIC	331011	16311	/Coulto

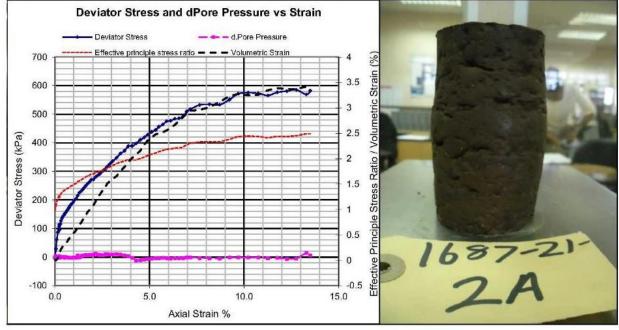
Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-21
Field Sample Number:	CTP - Mix	Depth (m):	-

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks:	A Consolidated Drained teston a remoulded sample tested saturated.						

SATURATION DATA Test No. 2

Saturation method: Altern	ating increments of cell- & back pressure	
Pressure increments applied (kF	a): 50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.99


CONSOLIDATION DATA

Effective cons. Stress (kPa):		396.7 t100 (mi		0 (minutes):	(minutes): 324		Side drains fitted: `	
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100.03	*50.03	1965.85	25.5	1519	0.7756	89	394930660
CONSOLIDATED	97.49	48.74	1865.85	26.7	1645	0.6401	113	2.698 Determined
FINAL (After shear)	84.32	51.50	2082.96	24.6	1701	0.5859	113	Determined
Initial pore pressure (kPa):	342.7	Fin	al pore pre	ssure (kPa):	345.8	PWP dissi	pation (%): 9	7
*: Measured dimensions; a	Il other dim	ensions are	calculated.	, , ,				

SHEAR DATA

Rate of strain (%/hour):	0.09						
Initial pore pressure (kPa):	346.3	Initial	effective stress (kPa	a): 396.7			
Parameters at failure:				200			
Failure Criterion: N	Max. Deviator	Stress					
Axial strain (%):	12	2.77	Volumetric strain (%	6): 3.37			
Deviator stress (kPa): 585.0				Principle Stresses (kPa)			
Excess pore pressure (kPa)	: -6	.0		σ1	σ1'	σ3	Q3'
Effective principle stress rati	io: 2.	452		981.7	987.7	396.7	402.8

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compress	ion Test Results
Mzimyuhu Water Project	Date Received:

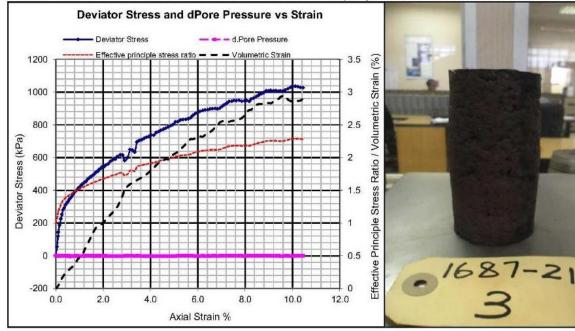
Project:	Mzimvubu Water Project	Date Received:	2014/08/12	
Job Number:	2014-B-1687	Laboratory Number:	1687-21	
Field Sample Number:	CTP - Mix	Depth (m):	•	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks: A Consolidated Drained teston a remoulded sample tested saturated.

SATURATION DATA Test No. 3

Saturation method: Alternati	ng increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97


CONSOLIDATION DATA

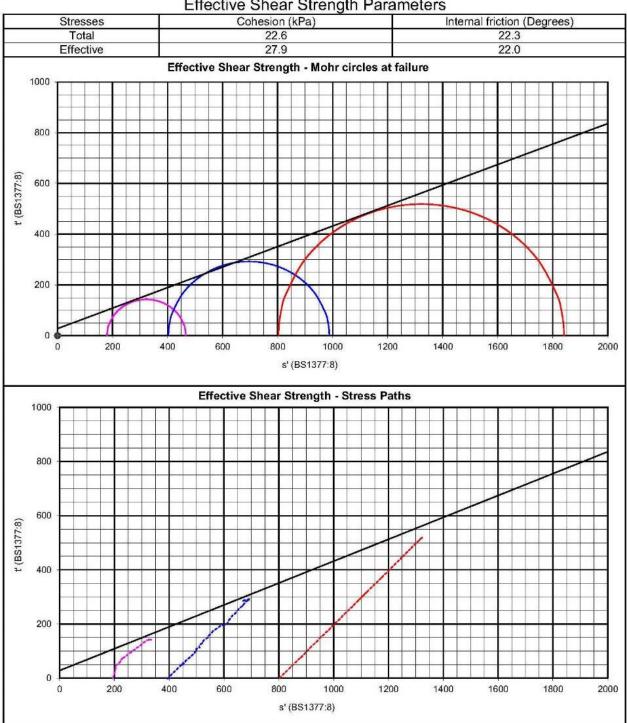
Effective cons. Stress (kPa):		802.1		00 (minutes): 400		Side drains fitted:		Yes
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100.57	*50.03	1965.85	23.7	1534	0.6655	91	0.555
CONSOLIDATED	96.74	48.09	1816.28	22.5	1732	0.4754	121	2.555 Determined
FINAL (After shear)	86.64	50.07	1969.24	20.8	1778	0.4373	122	Determined
Initial pore pressure (kPa): 339.0 Fir		al pore pre	ssure (kPa):	345.0	PWP dissi	pation (%): 1	00	
*: Measured dimensions; a	ll other dim	ensions are	calculated.				***************************************	

SHEAR DATA

Rate of strain (%/hour):	0.05							
Initial pore pressure (kPa):	338.9	Initia	l effective stress (kPa	a): 802.1				
Parameters at failure:								
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	10	.01	Volumetric strain (%	b): 2.85				
Deviator stress (kPa):	10	1037.7			Principle Stresses (kPa)			
Excess pore pressure (kPa): -1.	1		σ1	σ1'	σ3	σ3'	
Effective principle stress rat	tio: 2.2	292		1839.8	1840.9	802.1	803.2	

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091 PO Box 82223, Southdale 2135 Tel:+27 (0)11 835 3117 E-mail: jhb@civilab.co.za Website: www.civilab.co.za



Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-21
Field Sample Reference:	CTP - Mix	Depth (m):	-

Effective Shear Strength Parameters

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-21
Field Sample Reference:	CTP - Mix	Depth (m):	(F)

Consolidation vs Square Root Time
Test 1 Cell Pressure 600.0 0 500.0 1 Volumetric strain (%) 400.0 300.0 200.0 5 100.0 6 0.0 0 10 20 30 50 60 Square Root Time (min) Test 2 Volumetric strain Cell Pressure -- Pore Water Pressure 800.0 0 750.0 700.0 Volumetric strain (%) 650.0 600.0 550.0 500.0 450.0 400.0 350.0 300.0 8 10 20 30 60 70 Square Root Time (min) Test 3 Pore Water Pressure 1400.0 1200.0 0 Volumetric strain (%) 1000.0 800.0 600.0 400.0 10 200.0 0.0 12 100 0 20 40 60 80 120 140 160 Square Root Time (min)

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	B-1687-21
Field Sample Number:	CTP - Mix	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternation	ing increments of cell- & back pressure	
Pressure increments applied (kPa	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97

CONSOLIDATION DATA

Effective cons. Stress (kPa):		199.6 t100 (minutes): 64			Side	Side drains fitted: Yes		
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100.74	*49.96	1960.36	23.0	1543	0.7487	83	0.000
CONSOLIDATED	98.92	49.05	1889.65	25.9	1631	0.6541	107	2.698 Determined
FINAL (After shear)	85.29	52.82	2191.64	25.9	1630	0.6552	106	Determined
Initial pore pressure (kPa):	537.8	Fir	al pore pre	ssure (kPa):	351.7	PWP dissi	pation (%): 1	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30						
Initial pore pressure (kPa):	346.4	Initial effective	e stress (kPa):	199.6			
Parameters at failure:							
Failure Criterion: M	lax. Effective	Principle Stress R	atio				
Axial strain (%):	8.1	17					
Deviator stress (kPa):	124	124.7		Principle Stresses (esses (kPa)	
Excess pore pressure (kPa):	144	4.0		σ1	σ 1'	σ3	σ3'
Effective principle stress ratio	o: 3.2	246		324.3	180.3	199.6	55.5

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2% Deviator Stress and dPore Pressure vs Strain Deviator Stress - d.Pore Pressure ----- Effective principle stress ratio 160 3.5 140 3 120 Effective Principle Stress Ratio Deviator Stress (kPa) 100 2.5 80 2 60 40 1.5 20 0 5.0 15.0 10.0 0.0 Axial Strain %

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

Triaxial (Compression 1	Test Resu	ts
------------	---------------	-----------	----

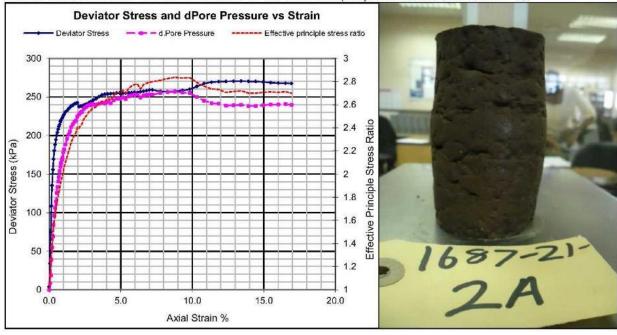
Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	B-1687-21
Field Sample Number:	CTP - Mix	Depth (m):	-

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated.

SATURATION DATA Test No. 2

Saturation method:	Alternating	increments of cell- & back pressure	
Pressure increments applie	d (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 3	343.0	Final back pressure (kPa): 333.0	Final B parameter: 0.99


CONSOLIDATION DATA

Effective cons. Stress (kPa):		397.1	t100 (minutes): 81			Side	Yes	
	Height mm	Diameter mm	Area mm ²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100	*50	1963.50	23.2	1550	0.7409	85	0.000
CONSOLIDATED	97.13	48.54	1850.78	24.1	1696	0.5910	110	2.698 Determined
FINAL (After shear)	80.69	53.26	2227.83	24.1	1693	0.5939	109	Determined
Initial pore pressure (kPa):	728.9	Fin	al pore pre	ssure (kPa):	343.1	PWP dissi	pation (%): 1	00
*: Measured dimensions; al	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			, ,	The second secon	2790000		100000

SHEAR DATA

D11007 01 1 0 7 1 1 7 1								
Rate of strain (%/hour):	0.30							
Initial pore pressure (kPa):	341.9	Initia	effective stres	ss (kPa): 39	97.1			
Parameters at failure:				821 83				
Failure Criterion: N	Max. Effective	Principle	Stress Ratio					
Axial strain (%):	8.	79						
Deviator stress (kPa):	25	7.6				Principle Str	esses (kPa)
Excess pore pressure (kPa)): 25	6.8			σ1	σ1'	G 3	σ3'
Effective principle stress rat	io: 2.	836			654.7	397.9	397.1	140.3

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

I i i axiai Cullipiessiuli Test Nesui	Triaxial	Compression	Test Results
---------------------------------------	----------	-------------	--------------

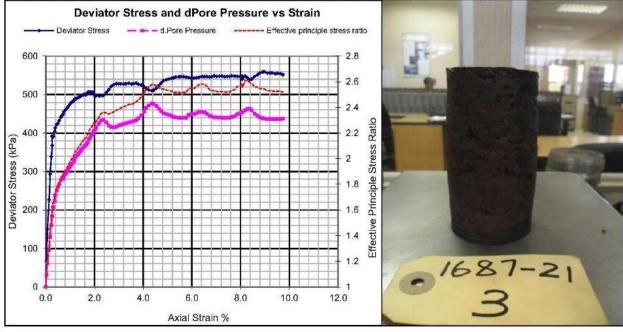
Project:	Mzimvubu Water Project	Date Received:	2014/08/12 B-1687-21	
Job Number:	2014-B-1687	Laboratory Number:		
Field Sample Number:	CTP - Mix	Depth (m):	-	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks:	A Consolidated Undrained test on a remoulded sample tested saturated.

SATURATION DATA Test No. 3

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.98


CONSOLIDATION DATA

Effective cons. Stress (kPa):		799.8 t100 (m		0 (minutes):	minutes): 400		Side drains fitted: Yes	
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*100	*50	1963.50	22.9	1556	0.7335	84	0.000
CONSOLIDATED	96.20	48.06	1814.28	22.0	1757	0.5359	111	2.698 Determined
FINAL (After shear)	86.83	50.59	2009.97	22.0	1751	0.5409	110	Determined
Initial pore pressure (kPa): 3	341.7	Fin	al pore pre	ssure (kPa):	362.9	PWP dissi	pation (%): 1	00

SHEAR DATA

Rate of strain (%/hour):	0.08							
Initial pore pressure (kPa):	342.2	Initi	al effective s	stress (kPa):	799.8			
Parameters at failure:								
Failure Criterion:	Max. Effective	Principle	Stress Rati	0				
Axial strain (%):	8.	28						
Deviator stress (kPa):	54	3.4				Principle Str	esses (kPa)
Excess pore pressure (kPa	3): 46	2.3			σ1	σ1'	Q 3	σ3'
Effective principle stress ra	atio: 2.	611			1343.2	880.9	799.8	337.4

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Project:

Civil Engineering Testing Laboratory

Triaxial Compression Test Results				
Mzimvubu Water Project	Date Received:	2014/08/12		
2014-B-1687	Laboratory Number:	B-1687-21		

Job Number: Field Sample Reference: CTP - Mix Depth (m): Effective Shear Strength Parameters Stresses Cohesion (kPa) Internal friction (Degrees) Total 0.0 14.6 Effective 14.5 25.2 Effective Shear Strength - Mohr circles at failure 500 400 t (BS1377:8) 300 200 100 200 300 400 600 700 800 900 1000 s' (BS1377:8) Effective Shear Strength - Stress Paths 600 500 400 (BS1377:8) 300 200 100 0 100 200 300 700 800 1000 600 s' (BS1377:8)

36 Fourth Str.,Booysens Reserve,Johannesburg 2091 PO Box 82223,Southdale 2135 Tel:+27 (0)11 835 3117 E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	B-1687-21
Field Sample Reference:	CTP - Mix	Depth (m):	-

Consolidation vs Square Root Time Test 1 Cell Pressure Volumetric strain Pore Water Pressure 600.0 500.0 Volumetric strain (%) 400.0 300.0 200.0 5 100.0 0.0 10 20 30 40 50 0 60 Square Root Time (min) Test 2 Volumetric strain Cell Pressure --- Pore Water Pressure 800.0 0 1 2 700.0 Volumetric strain (%) 3 650.0 4 600.0 5 550.0 500.0 7 450.0 400.0 350.0 9 10 300.0 70 0 10 20 30 40 50 60 Square Root Time (min) Test 3 Volumetric strain Pore Water Pressure 1400.0 -2 1200.0 🕏 Volumetric strain (%) 1000.0 800.0 6 600.0 400.0 10 200.0 12 0.0 100 0 20 40 60 80 120 140 Square Root Time (min)

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

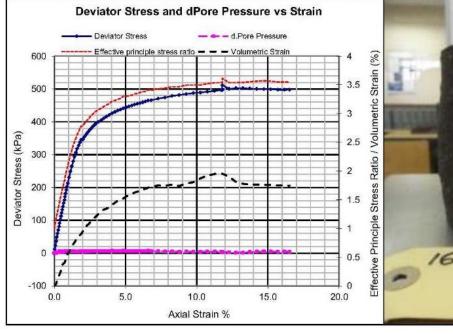
maxial compression rest results						
Project:	Mzimvubu Water Project	Date Received:	2014/08/12			
Job Number:	2014-B-1687	Laboratory Number:	1687-22			
Field Sample Number:	FTP - Mix	Depth (m):	-			

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks: A Consolidated Drained teston a remoulded sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.98


CONSOLIDATION DATA

Effective cons. Stress (kPa):		199.6	t10	0 (minutes):	ninutes): 1		Side drains fitted: Yes	
,	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*103.98	*50.11	1972.14	10.0	1909	0.4324	63	0.704
CONSOLIDATED	102.37	49.33	1911.19	15.7	2001	0.3660	117	2.734 Determined
FINAL (After shear)	85.47	53.52	2249.30	14.8	2036	0.3428	118	Determinet
Initial pore pressure (kPa):	539.2	Fin	al pore pre	ssure (kPa):	343.4	PWP dissi	pation (%): 1	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.	- 18 839			2	

SHEAR DATA

Rate of strain (%/hour):	0.50						
Initial pore pressure (kPa)	: 341.4	Initial	effective stress (kPa):	199.6			
Parameters at failure:							
Failure Criterion:	Max. Deviator	Stress					
Axial strain (%):	11	.80	Volumetric strain (%):	1.95			
Deviator stress (kPa):	(kPa): 511.4 Principle Stresses (kPa)						
Excess pore pressure (kP	a): 3.	8		σ1	σ1 '	σ3	σ3'
Effective principle stress ra	atio: 3.	611		711.1	707.3	199.6	195.9

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

Civil Engineering Testing Laboratory

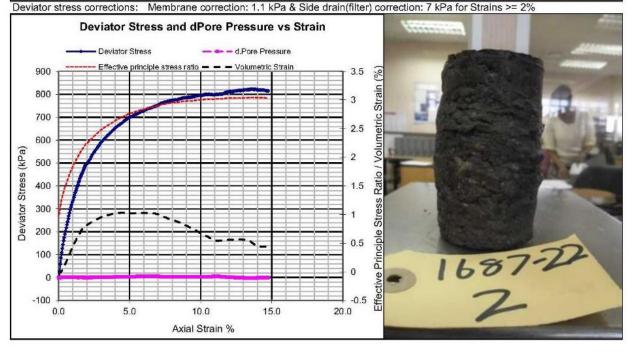
E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Triaxial Compression Test Results						
Project:	Mzimvubu Water Project	Date Received:	2014/08/12			
Job Number:	2014-B-1687	Laboratory Number:	1687-22			
Field Sample Number:	FTP - Mix	Depth (m):	-			

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks:	A Consolidated Drained teston a remoulded sample tested saturated.	

SATURATION DATA Test No. 2


Saturation method:	Alternating	increments of cell- & back pressure	
Pressure increments app	lied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa):	353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.96

CONSOLIDATION DATA

Void Ratio	Saturation %	Specific Gravity
0 4540		
0.4542	62	0.704
0.3764	108	2.734 Determined
0.3713	107	Determined
WP dissi	pation (%): 1	04
_	0.3713	330570301 33350

SHEAR DATA

Rate of strain (%/hour):	0.21						
Initial pore pressure (kPa):	337.6	Initial	effective stress (kP	a): 400.4			
Parameters at failure:							
Failure Criterion:	Max. Deviator	Stress					
Axial strain (%):	13	.60	Volumetric strain (%): 0.51	omen e e		
Deviator stress (kPa):	82	2.4		•	Principle Str	esses (kPa)
Excess pore pressure (kPa	a): -1	.3		σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 3.0)47		1222.8	1224.1	400.4	401.7

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

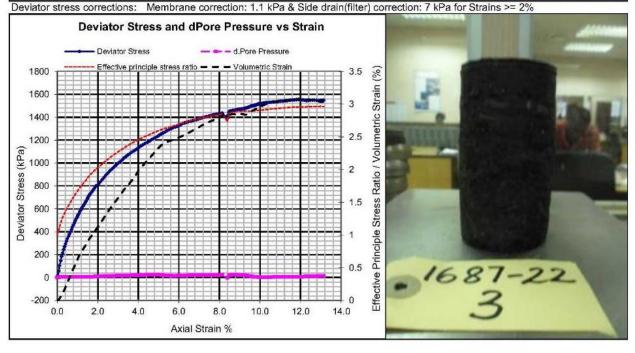
Civil Engineering Testing Laboratory

Triaxial Compression Test Results					
Project: Mzimvubu Water Project Date Received: 2014/08/12					
Job Number:	2014-B-1687	Laboratory Number:	1687-22		
Field Sample Number:	FTP - Mix	Depth (m):			

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,8

Remarks: A Consolidated Drained teston a remoulded sample tested saturated.

SATURATION DATA Test No. 3


Saturation method: Alternat	ng increments of cell- & back pressure	
Pressure increments applied (kPa)	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97

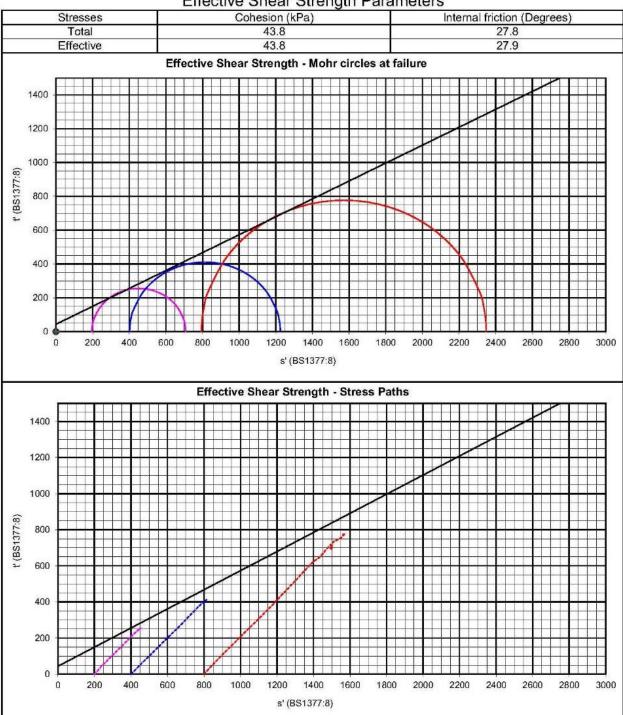
CONSOLIDATION DATA

Saturation	Specific
%	Gravity
62	0.704
118	2.734 Determined
120	
tion (%): 10	00
ıti	120

SHEAR DATA

Rate of strain (%/hour):	0.18			12-7			
Initial pore pressure (kPa):	336.8	Initial e	ffective stress (kPa):	800.2			
Parameters at failure:							
Failure Criterion:	Max. Deviator	Stress					
Axial strain (%):	1.	1.90 V	olumetric strain (%):	3.08			
Deviator stress (kPa):	15	554.2			Principle Str	esses (kPa)	1
Excess pore pressure (kPa	a): 6.	2		σ1	σ1'	σ3	σ3'
Effective principle stress ratio: 2.957		957		2354.4	2348.2	800.2	794.0

E-mail: jhb@civilab.co.za Website: www.civilab.co.za


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-22
Field Sample Reference:	FTP - Mix	Depth (m):	-

Effective Shear Strength Parameters

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-22
Field Sample Reference:	FTP - Mix	Depth (m):	¥

Consolidation vs Square Root Time Test 1 600.0 0 0.5 550.0 1 Volumetric strain (%) 1.5 500.0 2 2.5 450.0 3 400.0 3.5 4 350.0 4.5 5 300.0 0 2 10 18 20 Square Root Time (min) Test 2 --- Pore Water Pressure Volumetric strain 800.0 750.0 0 700.0 Volumetric strain (%) 650.0 600.0 550.0 500.0 450.0 400.0 350.0 300.0 10 20 40 50 60 Square Root Time (min) Test 3 Volumetric strain --- Pore Water Pressure Cell Pressure 1200.0 1100.0 2 1000.0 Volumetric strain (%) 900.0 800.0 700.0 6 600.0 500.0 400.0 300.0 0 10 20 40 50 60 70 Square Root Time (min)

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

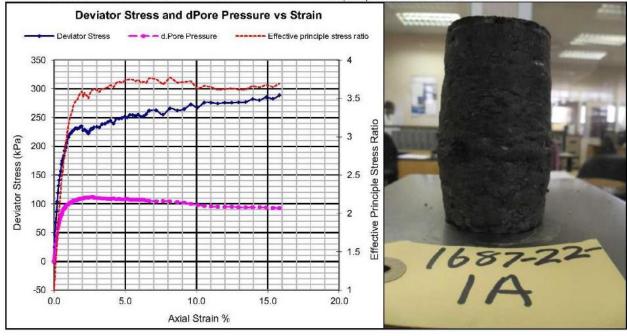
Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-22
Field Sample Number:	FTP - Mix	Depth (m):	-

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 393.0	Final back pressure (kPa): 383.0	Final B parameter: 1.00


CONSOLIDATION DATA

Effective cons. Stress (kPa):		199.8 t100 (minutes): 1			Side	Side drains fitted: Yes		
	Height mm	Diameter mm	Area mm ²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*105.19	*50.65	2014.88	10.0	1849	0.4786	57	0.704
CONSOLIDATED	104.13	50.14	1974.32	15.7	1907	0.4339	99	2.734 Determined
FINAL (After shear)	87.67	54.64	2345.09	15.7	1906	0.4342	99	Determinet
Initial pore pressure (kPa):	573.7	Fir	al pore pre	ssure (kPa):	387.4	PWP dissi	pation (%): 1	00
*: Measured dimensions; a	Il other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30						
Initial pore pressure (kPa):	386.2	Initial e	effective stress (kPa): 199.8			
Parameters at failure:			•				
Failure Criterion: N	Max. Effective I	Principle St	ress Ratio				
Axial strain (%):	8.1	5					
Deviator stress (kPa):	265	5.9			Principle	Stresses (kPa)
Excess pore pressure (kPa)): 104	0		σ1	G1 '	G 3	σ3'
Effective principle stress rat	io: 3.7	74		465.7	361.7	199.8	95.9

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

Civilab

Civil Engineering Testing Laboratory

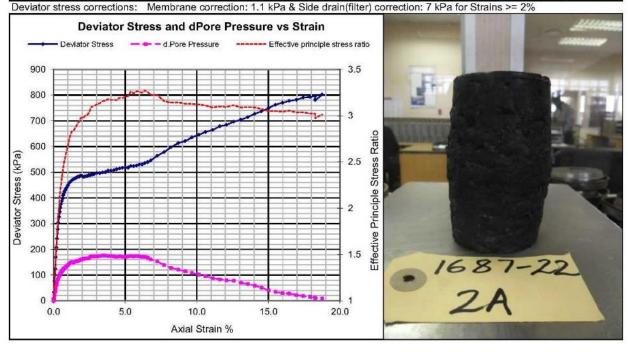
E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Triaxial Compression Test Results						
Project:	Mzimvubu Water Project	Date Received:	2014/08/12			
Job Number:	2014-B-1687	Laboratory Number:	1687-22			
Field Sample Number:	FTP - Mix	Depth (m):	4			

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated.

SATURATION DATA Test No. 2


Saturation method:	Alternating	increments of cell- & back pressure	
Pressure increments appl	ied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa):	333.0	Final back pressure (kPa): 323.0	Final B parameter: 0.96

CONSOLIDATION DATA

Effective cons. Stress (kPa):		406.5 t100 (minutes): 0			Side drains fitted: Yes			
	Height mm	Diameter mm	Area mm ²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*104.42	*50.62	2012.49	10.0	1867	0.4645	59	0.704
CONSOLIDATED	102.88	49.87	1953.12	13.9	1953	0.3997	95	2.734 Determined
FINAL (After shear)	83.59	55.32	2403.96	13.9	1952	0.4004	95	Determined
Initial pore pressure (kPa):	704.8	Fin	al pore pre	ssure (kPa):	322.2	PWP dissi	pation (%): 1	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.	·			70	

SHEAR DATA

Rate of strain (%/hour):	0.50						
Initial pore pressure (kPa):	319.5	Initial effe	ctive stress (kPa)	: 406.5			
Parameters at failure:							
Failure Criterion: N	Max. Effective	Principle Stres	ss Ratio				
Axial strain (%):	6.3	37					
Deviator stress (kPa):	53	5.1			Principle St	resses (kPa)
Excess pore pressure (kPa)				σ1	σ1'	σ3	Q3,
Effective principle stress rat	tio: 3.2	271		941.6	770.7	406.5	235.6

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compression	Test Results
IIIaxiai	Compression	i cat i canita

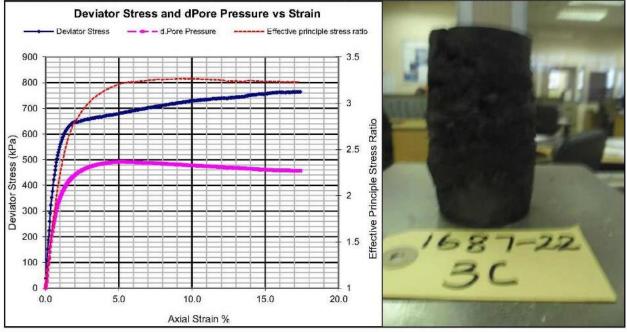
Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-22
Field Sample Number:	FTP - Mix	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks:	A Consolidated Undrained test on a remoulded sample tested saturated.	

SATURATION DATA Test No. 3

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.98


CONSOLIDATION DATA

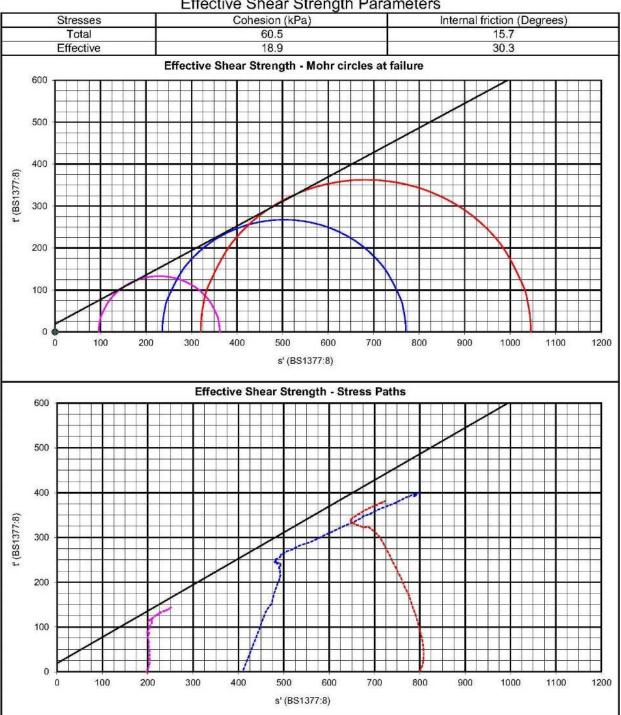
Effective cons. Stress (kPa):		799.7	t100 (minutes): 169			Side drains fitted: Yes		
	Height mm	Diameter mm	Area mm²	Moisture Content %	Dry Density kg/m ³	Void Ratio	Saturation %	Specific Gravity
INITIAL (Before saturation)	*105.72	*50.84	2030.02	9.8	1831	0.4934	55	0.704
CONSOLIDATED	104.13	50.07	1968.78	13.8	1918	0.4258	89	2.734 Determined
FINAL (After shear)	86.01	55.09	2383.39	13.8	1917	0.4265	88	Determined
Initial pore pressure (kPa):	341.8	Fir	al pore pre	ssure (kPa):	342.4	PWP dissi	pation (%): 9	9
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.79							
Initial pore pressure (kPa):	341.3	Initia	effective stress	(kPa): 799.	7			
Parameters at failure:								
Failure Criterion: M	lax. Effective	Principle :	Stress Ratio					
Axial strain (%):	9.	44						
Deviator stress (kPa):	72	25.4		Principle Stresses (kPa)				
Excess pore pressure (kPa):	: 47	79.8			σ1	σ 1'	σ3	σ3'
Effective principle stress rati	o: 3.	267		1.5	25.1	1045.3	799.7	319.9

Deviator stress corrections: Membrane correction: 2.2 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091 PO Box 82223, Southdale 2135 Tel:+27 (0)11 835 3117 E-mail: jhb@civilab.co.za Website: www.civilab.co.za



Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12		
Job Number:	2014-B-1687	Laboratory Number:	1687-22		
Field Sample Reference:	FTP - Mix	Depth (m):	-		

Effective Shear Strength Parameters

36 Fourth Str.,Booysens Reserve,Johannesburg 2091 PO Box 82223,Southdale 2135 Tel:+27 (0)11 835 3117 E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2014/08/12
Job Number:	2014-B-1687	Laboratory Number:	1687-22
Field Sample Reference:	FTP - Mix	Depth (m):	-

Consolidation vs Square Root Time Test 1 Volumetric strain Cell Pressure Pore Water Pressure 650.0 0 0.5 600.0 Volumetric strain (%) 1 1.5 500.0 2 450.0 2.5 400.0 3 350.0 3.5 300.0 10 20 30 40 50 60 70 0 Square Root Time (min) Test 2 Volumetric strain -- Pore Water Pressure 600.0 0 0.5 550.0 1 Volumetric strain (%) 3.5 2.5 3 3 5.5 500.0 450.0 400.0 4 350.0 4.5 300.0 0 10 20 30 35 40 Square Root Time (min) Test 3 Volumetric strain --- Pore Water Pressure 1200.0 0 0.5 1100.0 1 1000.0 -/Pore Water Pressure /olumetric strain (%) 900.0 2 800.0 2.5 700.0 3 600.0 3.5 500.0 <u>=</u> 400.0 300.0 0 5 10 20 25 30 35 40 Square Root Time (min)

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	T			Test 1
Project No.:	2014	-B-1687		Sample No.:		1687-21	
Borehole No:	CTP	: MIX		Depth:		-	
Date Received:	12/08	3/2014		Date Tested:		22/10/2014	
Remarks: An ur	ndisturbed	sample tested	soaked.				
Machine No.	6	Ring No.	35	Height (mm)	20.7	Diameter (mm)	76.2

Masses for Water Content Determination (g)

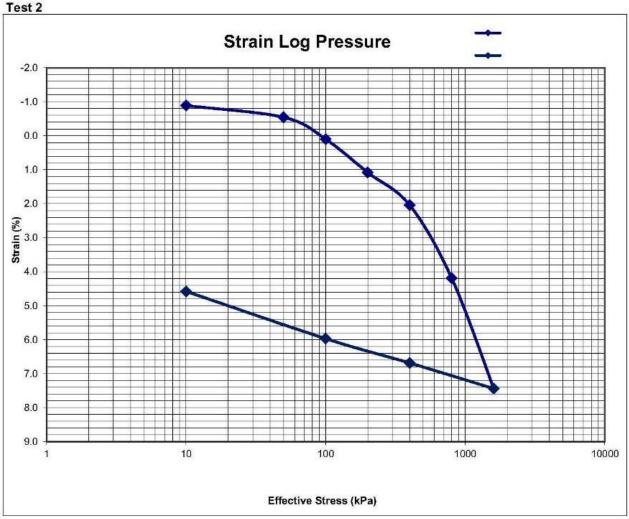
Wet Sample	and Ring	Dry Sample	Ring	Water Content	
Before Test	After Test	and Ring	Only	Before Test	After Test
265.5	266.0	232.1	84.97	22.7%	23.0%

Pre-Determined Particle Specific Gravity 2.555

	L.	Te-Dete	mineu r	article 3	specific c	ravity	2.000					
W4	AG MAAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	- 1	nitial Pa	ramete	rs	3047						
Void Ratio	0.6393		Degree o	f Satura	tion (%)	90.7		Dry Dens	ity (Kg/r	n3)	1559	
Effect, Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction	on (u)	0	50	82	122	189	299	417	231	117	42	0
HH:MM:SS	√Minutes			Dial Rea	adings in M	icrons				Initial Dia	Reading	13592
00:00:00	0.00	13592										
12:00:00	26.83				13246							
18:00:00	32.86					eanaanj					12602	
19:00:00	33.76									12239		
20:00:00	34.64					12980		11635				
24:00:00	37.95						12425				- 4	
76:00:00	67.53		13654	13489					11977			
96:00:00	75.89	13776										
End of Prima	ry Cons	13776	13654	13489	13246	12980	12425	11635	11977	12239	12602	
Number of Re	eadings:	2	1	1	1	1	1	- 1	1	1	1	0

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za


Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2014-B-1687	Sample No.:	1687-21
Borehole No:	CTP: MIX	Depth:	e:
Date Received	1: 12/08/2014	Date Tested:	22/10/2014

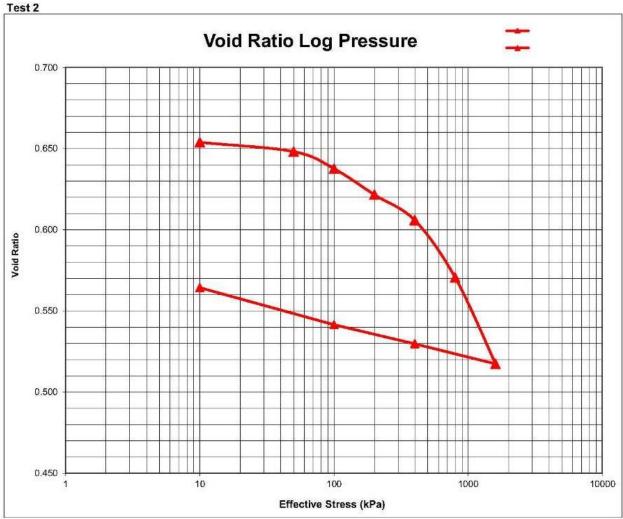
Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.89	-0.54	0.10	1.08	2.04	4.19	7.44	6.69	5.97	4.58	
Mv (1/MPa)		0.0870	0.1285	0.0981	0.0481	0.0537	0.0406	0.0063	0.0238	0.1546	
Void Ratio	0.6539	0.6482	0.6376	0.6216	0.6058	0.5706	0.5173	0.5297	0.5414	0.5642	,

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07 BRANCHES; CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID 36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

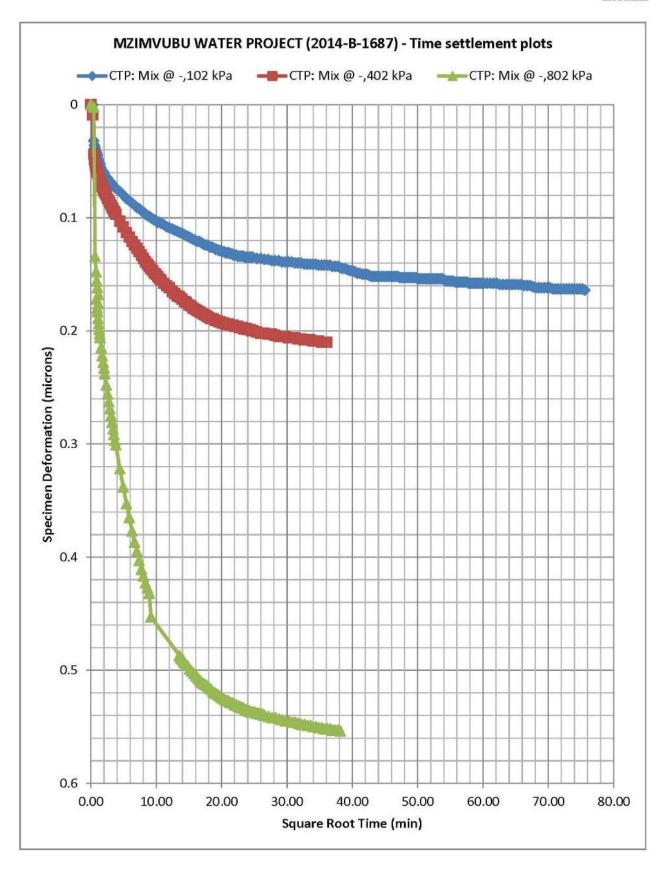
Civilab **Civil Engineering Testing Laboratories**

Email: jhb@civilab.co.za • Website: www.civilab.co.za


Consolidation Tests

Project:	MZIMVUBU WATER PROJECT	0533	
Project No.:	2014-B-1687	Sample No.:	1687-21
Borehole No:	CTP: MIX	Depth:	2
Date Receive	(12/08/2014	Date Tested:	22/10/2014

Test 1


Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.89	-0.54	0.10	1.08	2.04	4.19	7.44	6.69	5.97	4.58	
Mv (1/MPa)		0.0870	0.1285	0.0981	0.0481	0.0537	0.0406	0.0063	0.0238	0.1546	
Void Ratio	0.6539	0.6482	0.6376	0.6216	0.6058	0.5706	0.5173	0.5297	0.5414	0.5642	

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07 BRANCHES: CENTURION - JOHANNESBURG - PIETERMARITZBURG - PINETOWN - PORT ELIZABETH - RUSTENBURG - VRYHEID

Civilab

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIM	VUBU WATER	PROJEC	T			Test 1
Project No.:	2014-	3-1687	Continue de la Contin	Sample No.:		1687-22	
Borehole No:	FTP:	MIX		Depth:			
Date Received:	12/08/	2014		Date Tested:		22/10/2014	
Remarks: An u	ndisturbed :	sample tested	soaked. Ir	nitial swell was ver	rified.		
Machine No.	5	Ring No.	36	Height (mm)	19.4	Diameter (mm)	76.1

Masses for Water Content Determination (g)

Wet Sample	and Ring	Dry Sample	Ring	Water C	ontent
Before Test	After Test	and Ring	Only	Before Test	After Test
279.2	286.0	260.4	85.2	10.7%	14.6%

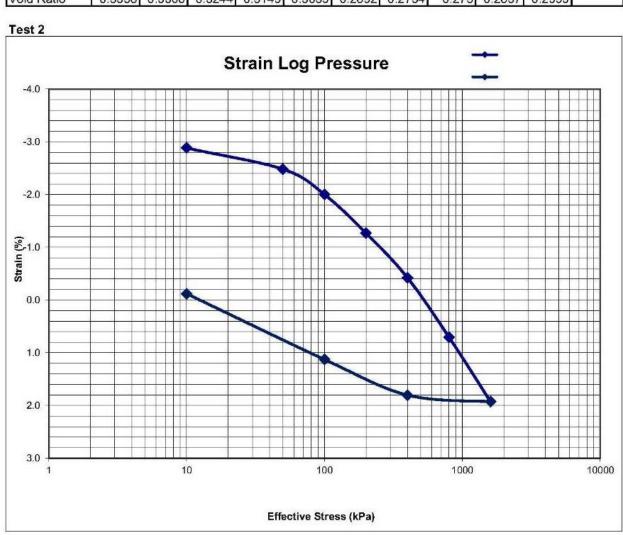
Pre-Determined Particle Specific Gravity 2.578

Initial	Paran	ntare
IIIIIIIIIIII	raian	leters

Void Ratio	0.2984		Degree o	of Satura	tion (%)	92.7		Dry Dens	sity (Kg/n	n3)	1986	
Effect. Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction	n (u)	0	37	68	101	170	220	321	196	112	45	0
HH:MM:SS	√Minutes	1000	7,000	Dial Rea	idings in M	licrons		100	779	Initial Dial	Reading	13053
00:00:00	0.00	13053										
03:00:00	13.42								12507			
08:00:00	21.91					12965						10
17:00:00	31.94					N.	12696					
18:00:00	32.86			annanna i		Summi j				12722		
22:00:00	36.33							12358				
24:00:00	37.95				13198							i i
72:00:00	65.73	13612	13497			- 8	8.0				13031	5513
78:00:00	68,41			13373								
End of Prima	ry Cons	13612	13497	13373	13198	12965	12696	12358	12507	12722	13031	
Number of Re	eadings:	2	1	1	1	1	1	1	1	1	1	0

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za



Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2014-B-1687	Sample No.:	1687-22
Borehole No:	FTP: MIX	Depth:	5
Date Receive	d: 12/08/2014	Date Tested:	22/10/2014

Test 1

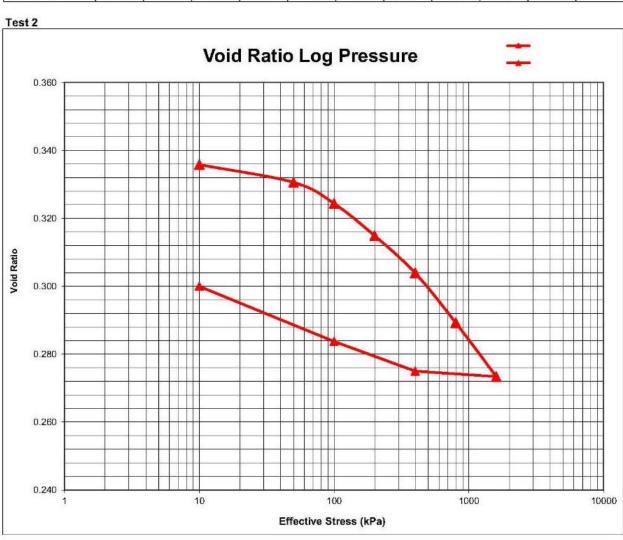
Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-2.88	-2.48	-2.00	-1.27	-0.42	0.71	1.93	1.80	1.13	-0.12	
Mv (1/MPa)		0.1005	0.0959	0.0732	0.0423	0.0282	0.0153	0.0010	0.0225	0.1386	
Void Ratio	0.3358	0.3306	0.3244	0.3149	0.3039	0.2892	0.2734	0.275	0.2837	0.2999	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

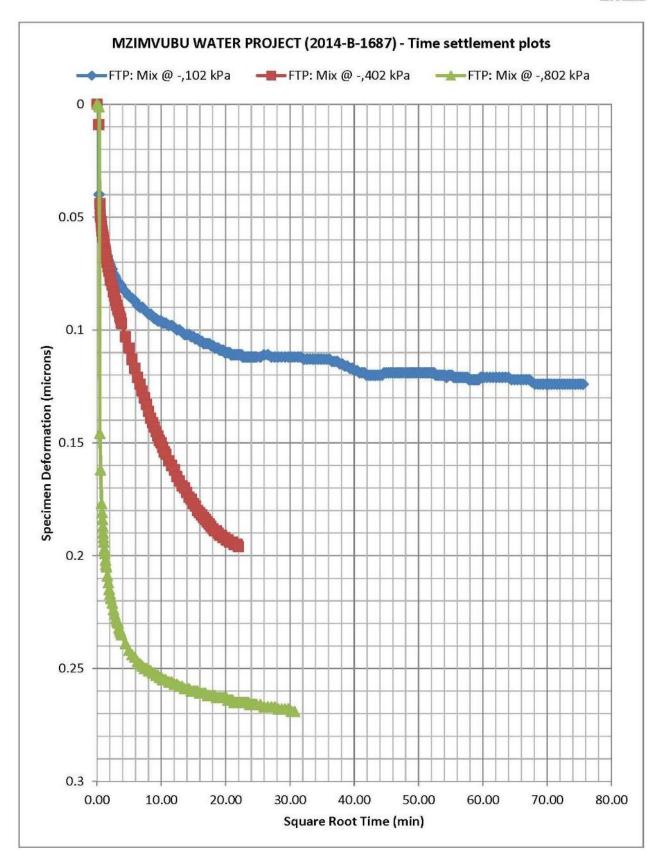
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Civil Engineering Testing Laboratories


Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Consolidation Tests

Project:	MZIMVUBU WATER PROJECT			
Project No.:	2014-B-1687	Sample No.:	1687-22	
Borehole No:	FTP: MIX	Depth:		
Date Receive	(12/08/2014	Date Tested:	22/10/2014	


Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-2.88	-2.48	-2.00	-1.27	-0.42	0.71	1.93	1.80	1.13	-0.12	
Mv (1/MPa)		0.1005	0.0959	0.0732	0.0423	0.0282	0.0153	0.0010	0.0225	0.1386	
Void Ratio	0.3358	0.3306	0.3244	0.3149	0.3039	0.2892	0.2734	0.275	0.2837	0.2999	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

Civilab

E6:

WATER TEST RESULTS

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ14/08/1015 7 October 2014

Client: Jeffares & Green
Subject: Water Testing
Project: Tsitsa River

O/N:

LABORATORY REPORT

CLIENT

Jeffares & Green (Pty) Ltd, P O Box 794, HILTON, 3245

SYNOPSIS:

Physical and chemical tests on a sample of water have been provided.

BRIEF FROM CLIENT:

Contest were requested to analyse the samples for;

- · Total dissolved solids
- Chloride content
- Calcium hardness as CaCO₃
- pH
- Sulphates (as SO₃)
- Comparative Cubes

SAMPLES:

A 11 litre sample, Tsitsa River, was received on 15.08.2014.

TESTING:

The following test methods were used;

- Total dissolved solids SABS Standard Method 213.
- Chloride content Volhard method typically as described in Quantitative Analytical Chemistry by Fritz & Schenk.
- Calcium Hardness of water SABS Standard Method 216. This does not give the total carbonates and bicarbonates, but simply the calcium hardness or equivalent calcium carbonate in mg/l.
- pH as described in the operating manual of our pH meter a WTW inoLab pH720 meter and using Hanna buffer solutions for calibration.

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services
Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe, VA Horton
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng), FICT, MSA Com I

Testing, Training and Consulting in Concrete

Ref: CJ14/08/1015 7 October 2014

Client: Jeffares & Green
Subject: Water Testing
Project: Tsitsa River

O/N:

- Sulphate SABS Standard Method 212.
- Comparative Cubes

All tests were carried out in duplicate i.e. an A and B sample and the average values determined and reported.

RESULTS:

Chemical Testing:

	Client Sample
TDS (mg/ℓ)	105
Chloride (Cl⁻) (mg/ℓ)	16
Calcium Hardness as CaCO ₃ (mg/ℓ)	71
рН	8.51
Sulphate (SO₃) (mg/ℓ)	None detected

Physical Testing:

Comparative cubes:

	Control	Sample	Sample as % of Control
	MPa	MPa	%
24hr	5.0	4.5	90
3d	12.4	11.7	94
7d	19.7	18.6	94
28d	V 1111141111111111111111111111111111111		

COMMENT:

The results indicate that the water sample is suitable for concrete manufacture.

We have used the following limits based on various sources for a number of years.

 Ref.
 CJ14/08/1015
 7 October 2014

 Client:
 Jeffares & Green

Subject: Water Testing
Project: Tsitsa River

O/N:

	(mg/ℓ)
Total dissolved solids	2000
Chloride (as Cl ⁻)	500
Calcium Hardness(as CaCO ₃)	400
pH	6 to 8
Sulphate as SO ₃	1000

These values seem to be conservative based on some of the latest publications; in particular the upper range of pH seems to have been increased substantially, probably with the experience of using wash water in RMC plants.

The ninth edition of Fulton's Concrete Technology states that the mean compressive strength at **seven** days of the test specimen, prepared with the test water, shall be 90% of the mean compressive strength of the corresponding specimens prepared with distilled or deionised water.

However, the eight edition of Fulton's Concrete Technology states that the compressive strength of 'test' cubes at 28 days should be no less than 90% of the control cubes.

BS 3148 has suggested that if the comparative strength is between 80 and 90%, then the water can still be used if the concrete mix proportions are adjusted.

Compressive strength of cubes at 24 hours and 3 days was carried out to determine any early age effect on the concrete strength.

RJL Raw

B Tech (Civil Eng)

ALS ANALYSIS AND INSPECTION - DURBAN (PTY) LTD Unit 5, 89 King Dinuzulu (Berea) Road, Durban, 4001, South Africa Post Net Suite #290 Private Bag X04

Dalbridge, 4014, South Africa Tel: +27 31 301 1257 Fax: +27 31 301 1256 Email: info.dbn@alsglobal.com

www.alsglobal.com

REFERENCE №: ALSD 3757 DATE: 02 October 2014

CERTIFICATE OF ANALYSIS

Report On: 3 (Three) Samples I.D.: Water

Date & Time Received: 29/09/14 - 14:00 Taken By: Yourselves

Date & Time Analysis Started: 01/10/14 - 14:00 From: Monika

Date & Time Analysis Finished: 02/10/14 - 15:05

MARKED: AS PER BELOW.

Results marked with "*" refers to tests that are "Not SANAS Accredited" in this report and are not included in the SANAS Schedule of Accreditation for this Laboratory.

Analysis on an as received basis:

	*Ammonia, as NH _{4,} mg/f [Kjeldahl Distillation]	Magnesium, as Mg, mg/t [ICP]	Dissolved Sulphates, as SO ₄ , mg/t [Gravimetric]
1. 1015/2 – BH T4	<1	25	21
2. 1015/3 – BH T5	<1	35	17
3. 1015/4 – BH T6	<1	33	20

Technical Signatory:	Chemistry		Microbiology	100 To
		Mr P. Ramdeen		Ms N. Kassim
Management Signatory:		Mr P. Ramdeen		
Contest Concrete				
P.O Box 1675 Hillcrest				
3650				

1 of I

Electronically transmitted reports are not considered official.

This report relates only to the samples supplied and ALS Analysis & inspection Durban (Pty) Ltd. does not accept responsibility for any matters arising from further use of these results. This document may only be reproduced in full and with the written approval of the Branch Manager.

"Opinions and Interpretations expressed herein are outside the scope of SANAS Accreditation"

REGISTERED NO. 2011/005247/07 Part of the ALS Laboratory Group An ALS Limited Company

RIGHT SOLUTIONS | RIGHT PARTNER

CJ14/08/1015a

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342

E-mail: contest@contest.co.za Web Page: www.contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

Client: Jeffares & Green
Subject: Water Testing

Tsitsa River

Project: O/N:

Ref:

27 October 2014

LABORATORY REPORT - ADDENDUM

CLIENT

Jeffares & Green (Pty) Ltd, P O Box 794, HILTON, 3245

SYNOPSIS:

Physical tests on a sample of water have been provided.

BRIEF FROM CLIENT:

Contest were requested to analyse the samples for;

Setting Times

SAMPLES:

A 11 litre sample, Tsitsa River, was received on 15.08.2014.

TESTING:

The following test methods were used;

Setting Times based on ASTM C403-99

RESULTS:

Physical Testing:

SETTING TIMES:

Mix Reference	Initial Set (mins)	Final Set (mins)	
(Test) Client Water	367	479	
(Control) Lab Water	328	378	

ASTM C403-99 states that setting time of concrete is an arbitrary value and has been taken to be as follows, as given in ASTM C403-99:

Initial set: 3.5MPa (measured as penetration resistance) Final set: 27.6MPa (measured as penetration resistance)

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services
Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe, VA Horton
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng), FICT, MSA Com I

Testing, Training and Consulting in Concrete

Ref: CJ14/08/1015a 27 October 2014

Client: Jeffares & Green
Subject: Water Testing
Project: Tsitsa River

O/N:

The test results given here have been determined under laboratory conditions using the test method described in ASTM C403-99.

These results obtained have therefore been achieved in laboratory controlled environmental conditions. The temperature of the laboratory (and therefore the test specimens) was maintained between 22 and 25 deg. C. The humidity in the laboratory during the testing was between 50 and 55%. There was no exposure of the test specimens to the sun, precipitation or any wind.

Concrete setting times and rates of gain of strength (amongst other concrete characteristics) are significantly affected by temperature, humidity, precipitation, exposure to the sun and wind speed (amongst other factors). However, the test specimens are covered by an impervious material (as required by the test method) to prevent evaporation therefore, the humidity at the surface of the specimens in the curing environment is most likely higher than the laboratory humidity due to the micro climate that exists in the area confined in the space above the concrete and beneath the impervious covering, of the test specimen. This higher humidity would be created by the evaporated water at the surface of the concrete specimen.

Taken into account of the factors mentioned above that effect the setting time and rate of gain of strength of concrete, it is likely that the setting time and rate of gain of strength of concrete under site conditions could be significantly different to those obtained using standard laboratory test methods. This will depend on the site conditions at the time when these factors have an influence on the concrete.

It would be advisable to make some attempt to determine by some method, the setting time and rate of gain of concrete strength for concrete on site at the relevant time. This will give a realistic value for these characteristics under the prevailing site conditions at that time.

COMMENT:

It can be seen from the results given that the initial and final setting times of the test water extended by 39 minutes and 101 minutes respectively, when compared to those of the control water. The control water is normal municipal supply as received at the laboratory in Westmead.

RJL Raw

B Tech (Civil Eng)

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342 E-mail: contest@contest.co.za Web Page: www.contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ14/08/1015 6 October 2014

Client: Jeffares & Green

Subject: Basson Index

Project: Laleni Dam & Tunnel

Water Analysis - Basson Index

Four bore hole water samples received on 15.08.2014 were analysed, as requested, to determine the Basson Index.

The results of the chemical analyses may be found appended. (The ammonium ion, magnesium and sulphate contents were determined by ALS).

The following indices were calculated as set out in the PCI publication "Deterioration of Concrete in aggressive waters – measuring aggressiveness and taking counter measures" and the subsequent addendum.

Reference	B/H T4	B/H T5	B/H T6
Leaching Corrosion sub index LSCI	305	224	252
Spalling Corrosion sub index SCSI	7	9	9
Aggressiveness Index LSCI + SCSI	312	233	261

The table of recommendations from the publication has been provided below;

TABLE 4: Guidelines for assessing final index (FI)

Final index	Aggressiveness	Recommendation
Under 350	Non- to mildly aggressive	Use concrete class as required for structural design, but see Remarks in Table 9.
350 to 750	Mildly to fairly aggressive	Good concrete design and construction essential. Read Remarks in Table 9.
750 to 1 000	Highly aggressive	Identify dominant corrosion sub-index and follow applicable recommendations,
Over 1 000	Very highly aggressive	Do not ase incontact with unprotected concrete unless recommended anti-corrosive measures can be carried out in full.

No optional corrections have been applied as there are essentially environmental factors and must be provided by yourselves.

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services
Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng),FICT, MSA Corr I

Testing, Training and Consulting in Concrete

Page 1 of 2

Ref: CJ14/08/1015 6 October 2014

Client: Jeffares & Green
Subject: Basson Index
Project: Laleni Dam & Tunnel

Analytical results: Chemical Analysis

Borehole Reference:

	T4	T5	T6
pH	8.24	7.55	7.64
Calcium carbonate saturated pH	8.11	7.30	7.45
Calcium hardness as CACO ₃ (mg/l)	79	146	144
Total ammonium as NH ₄ (mg/l)	< 1	< 1	<1
Magnesium as Mg (ml/l)	25	35	33
Sulphate as SO ₄	21	17	20
Chloride as Cl (mg/l)	101	169	176
Total dissolved solids (mg/l)	607	876	767

A J M Horton Pr Tech Eng

APPENDIX F

TRIAL PIT LOGS

F1:

PIPELINE TRIAL PIT LOGS

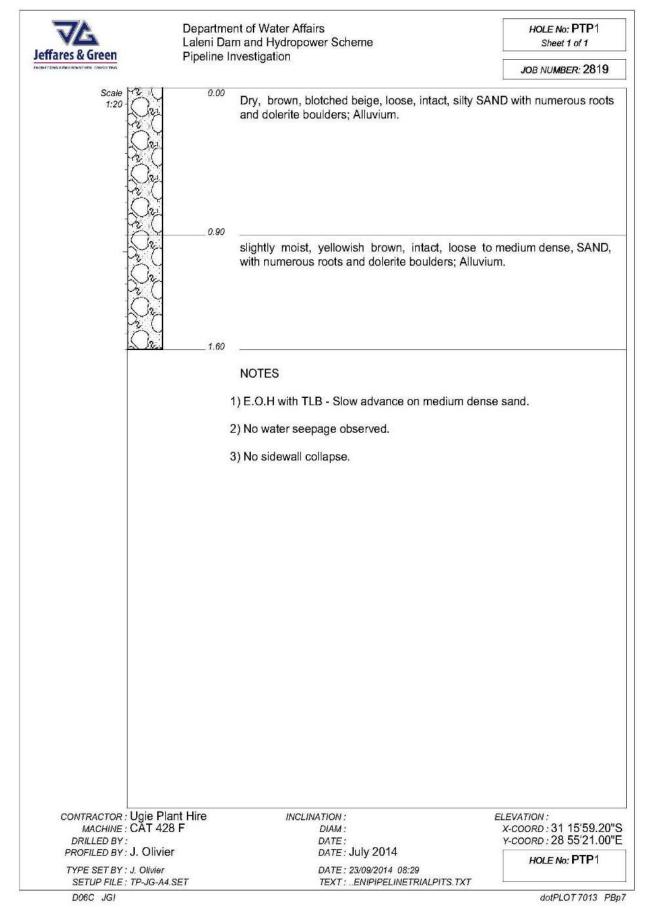


Fig F-1.1: Pipeline Trial Pit 1

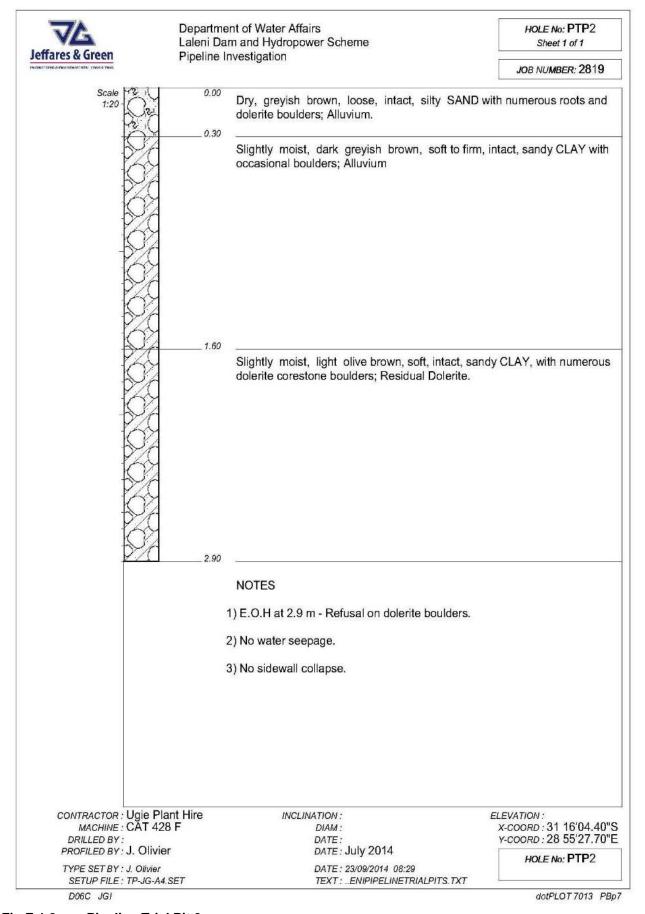


Fig F-1.2: Pipeline Trial Pit 2

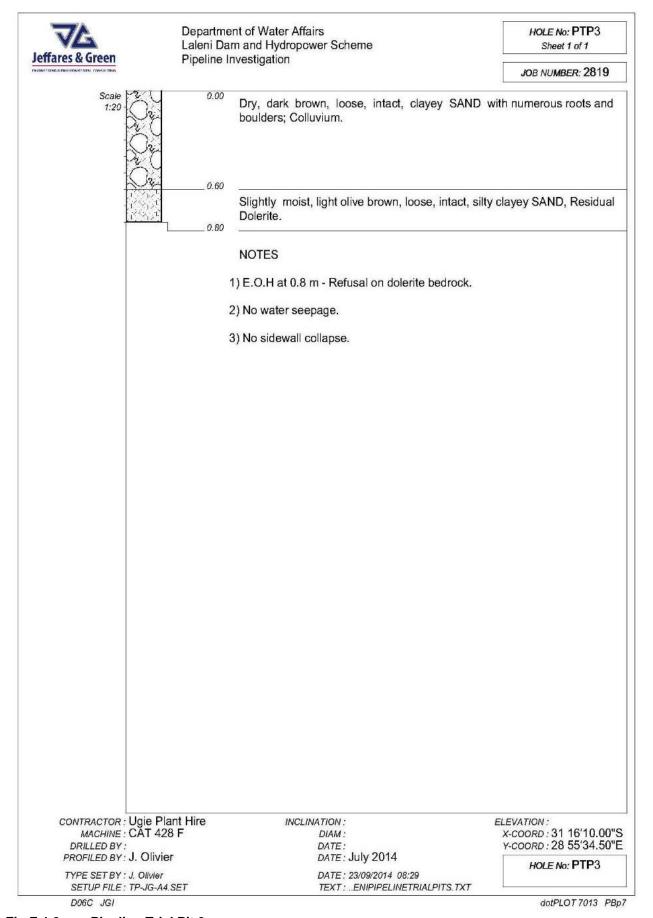


Fig F-1.3: Pipeline Trial Pit 3

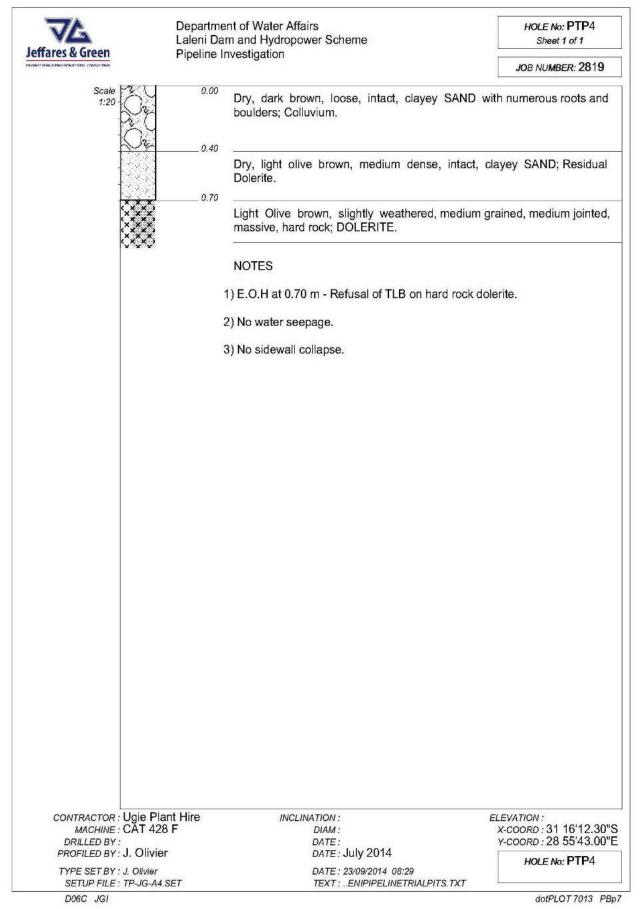


Fig F-1.4: Pipeline Trial Pit 4

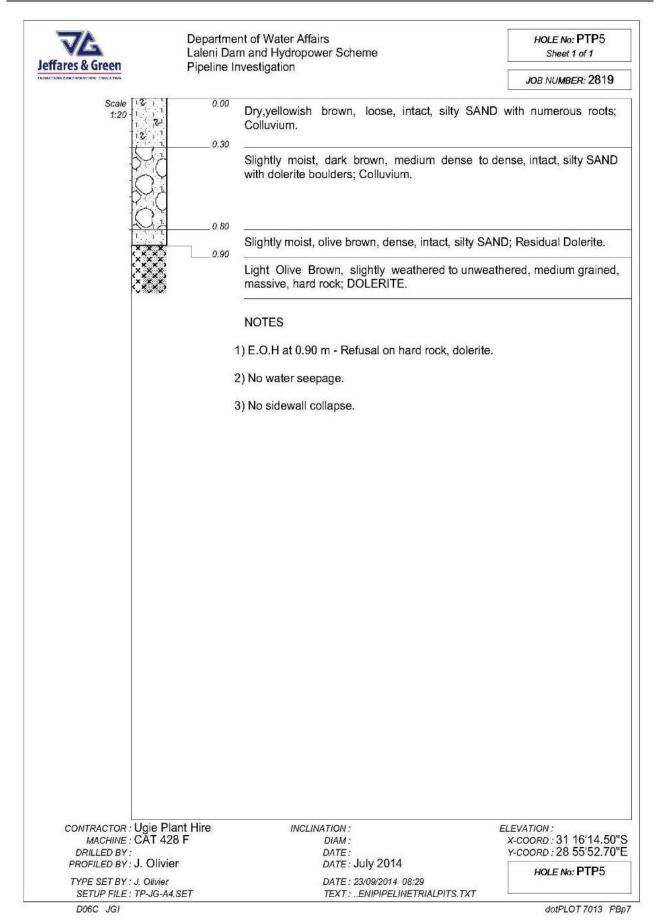


Fig F-1.5: Pipeline Trial Pit 5

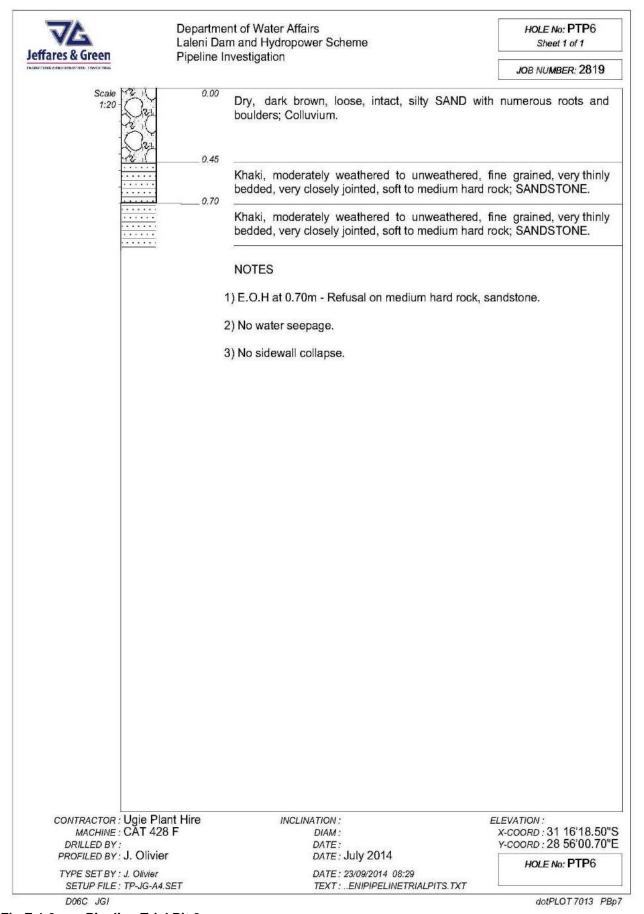


Fig F-1.6: Pipeline Trial Pit 6

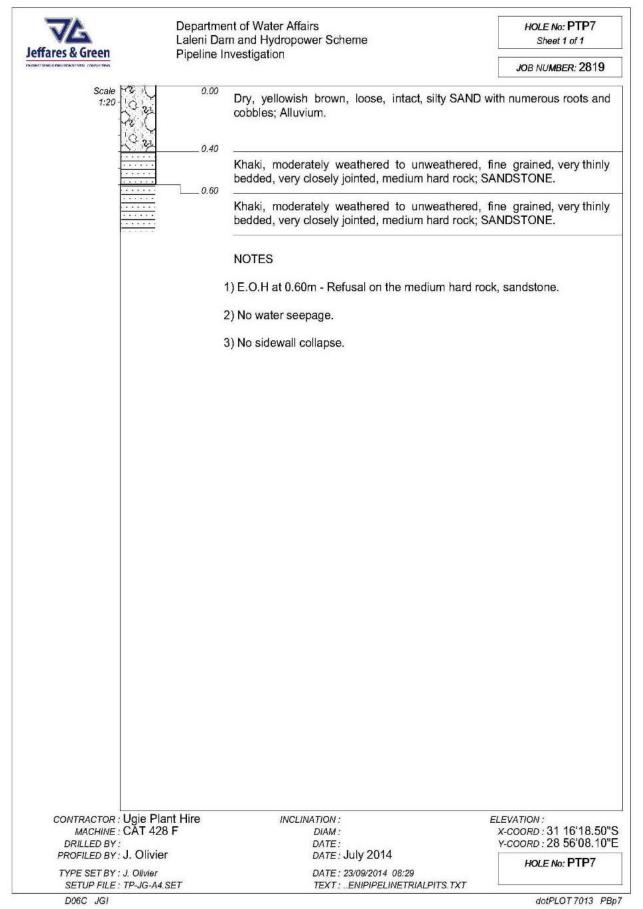


Fig F-1.7: Pipeline Trial Pit 7

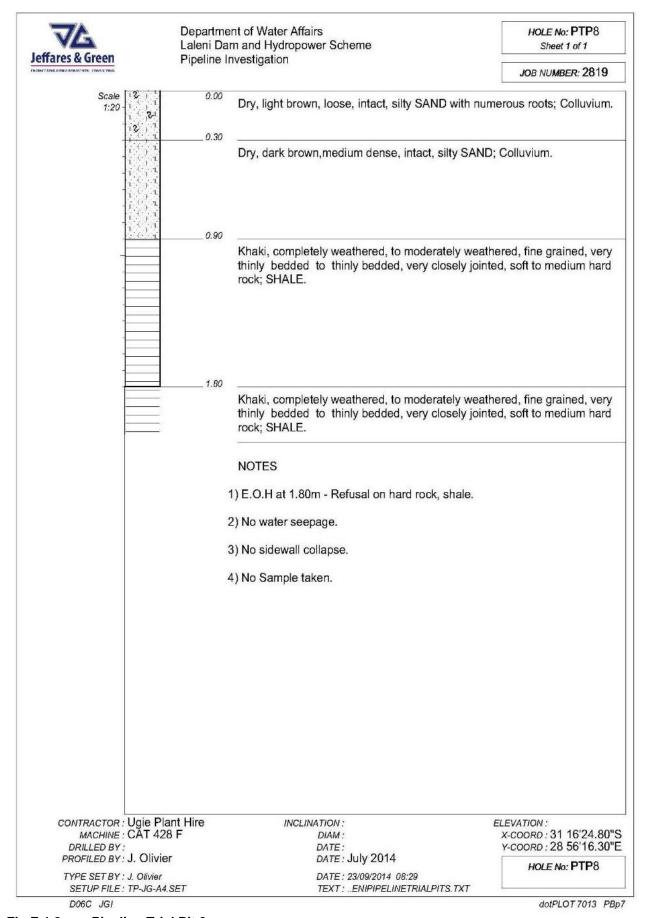


Fig F-1.8: Pipeline Trial Pit 8

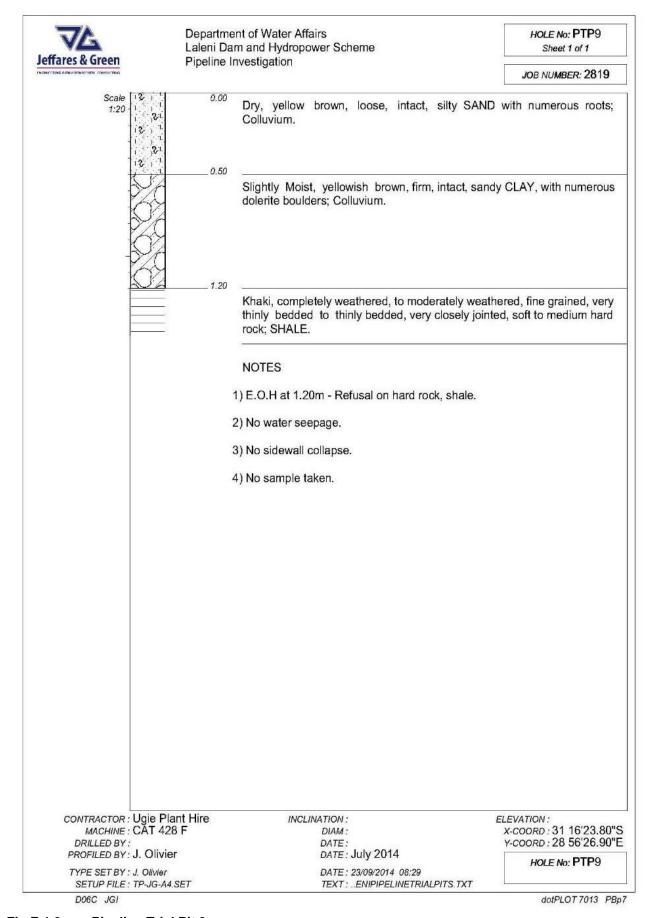


Fig F-1.9: Pipeline Trial Pit 9

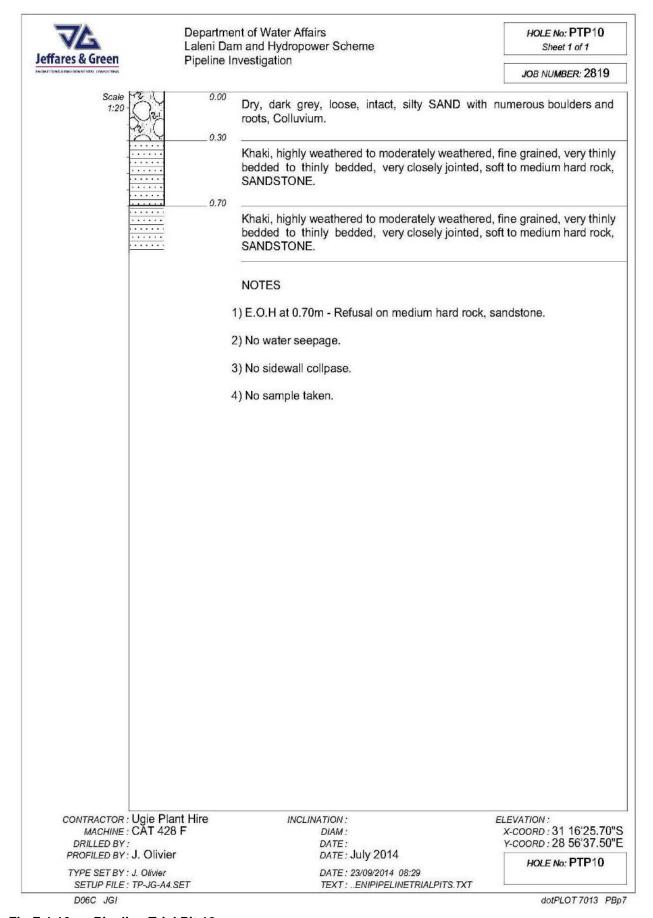


Fig F-1.10: Pipeline Trial Pit 10

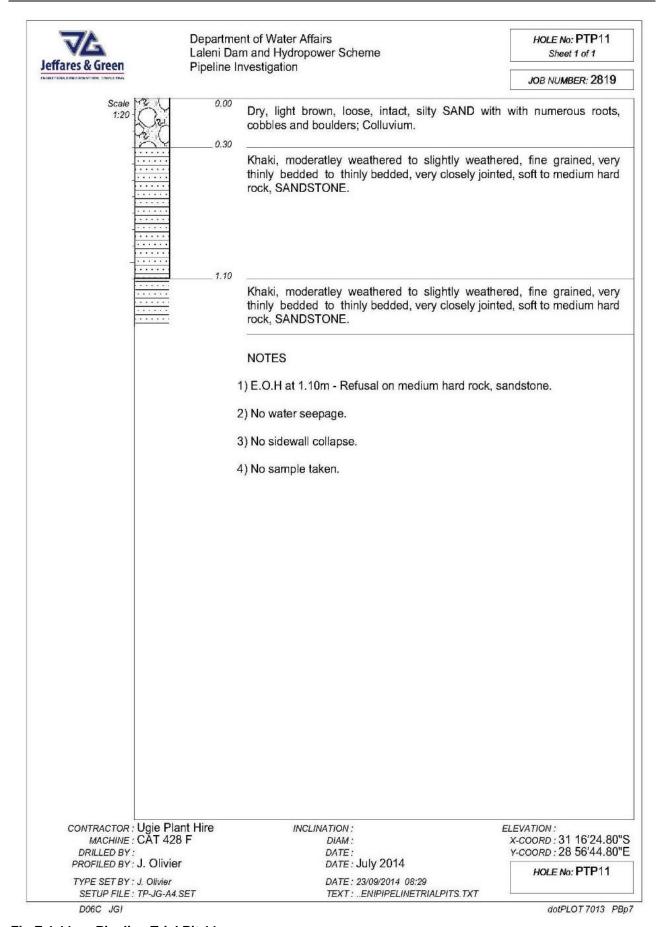


Fig F-1.11: Pipeline Trial Pit 11

F2:

CORE BORROW PIT TRIAL PIT LOGS

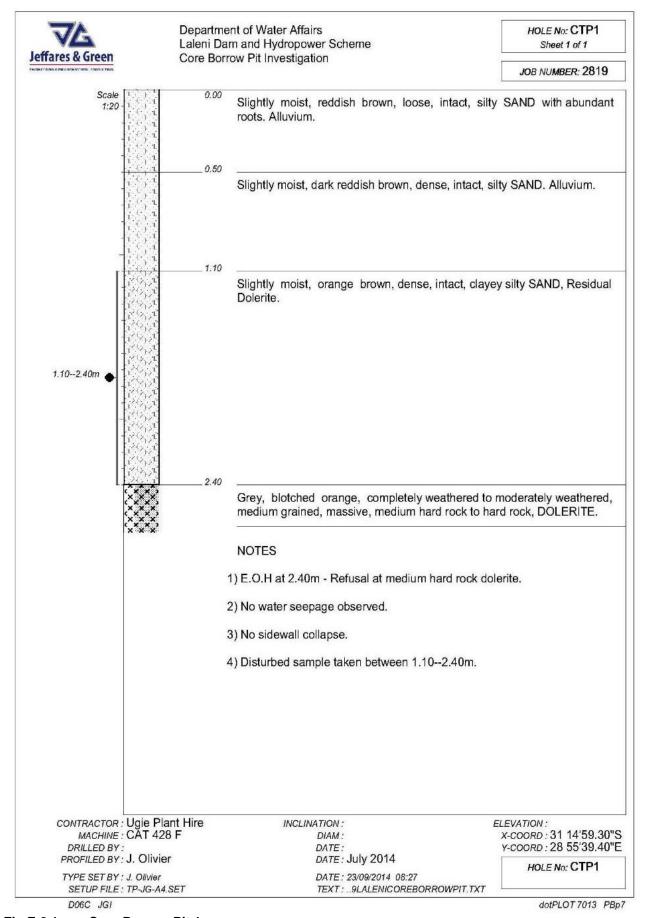


Fig F-2.1: Core Borrow Pit 1

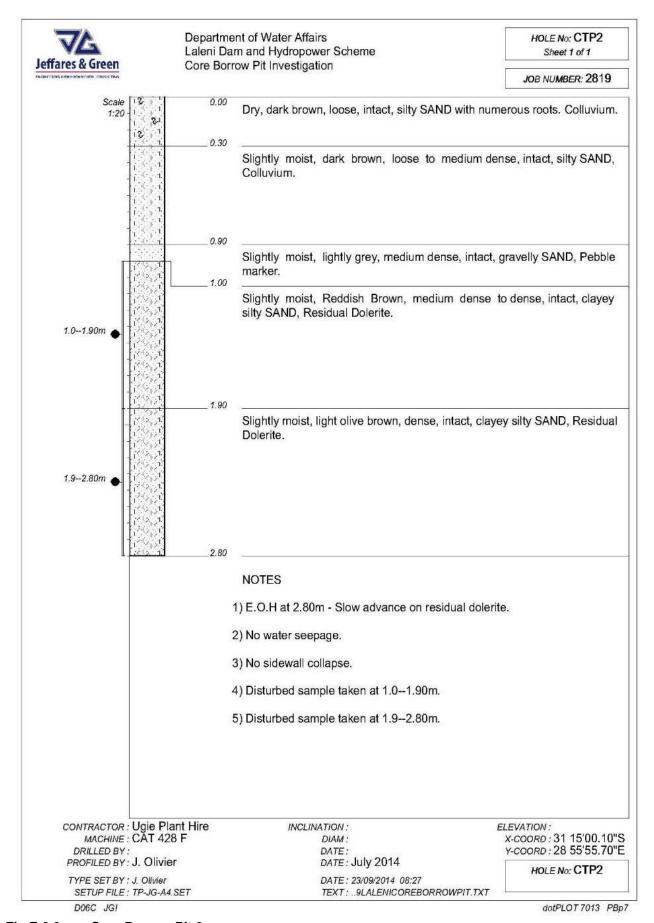


Fig F-2.2: Core Borrow Pit 2

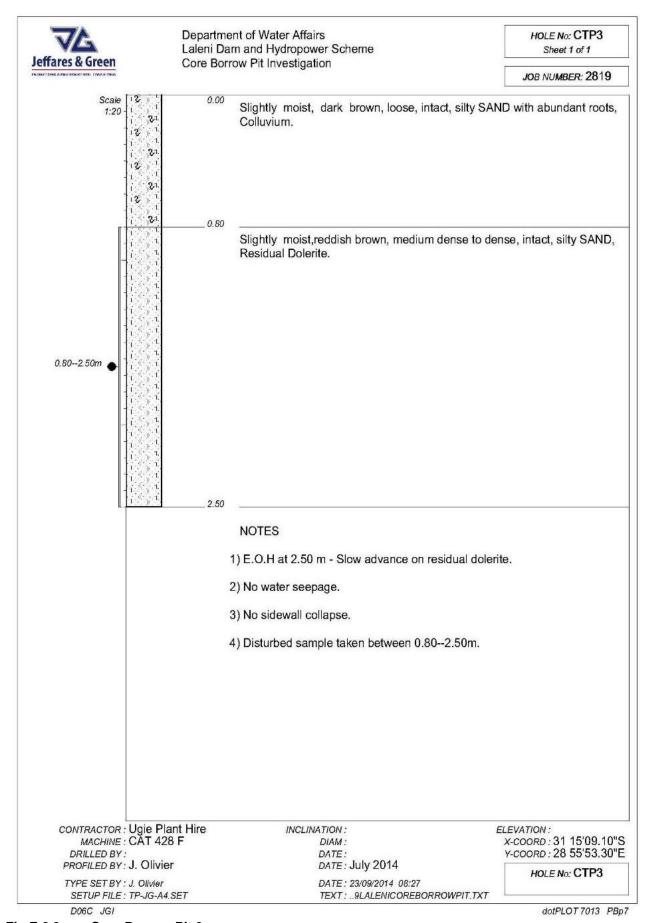


Fig F-2.3: Core Borrow Pit 3

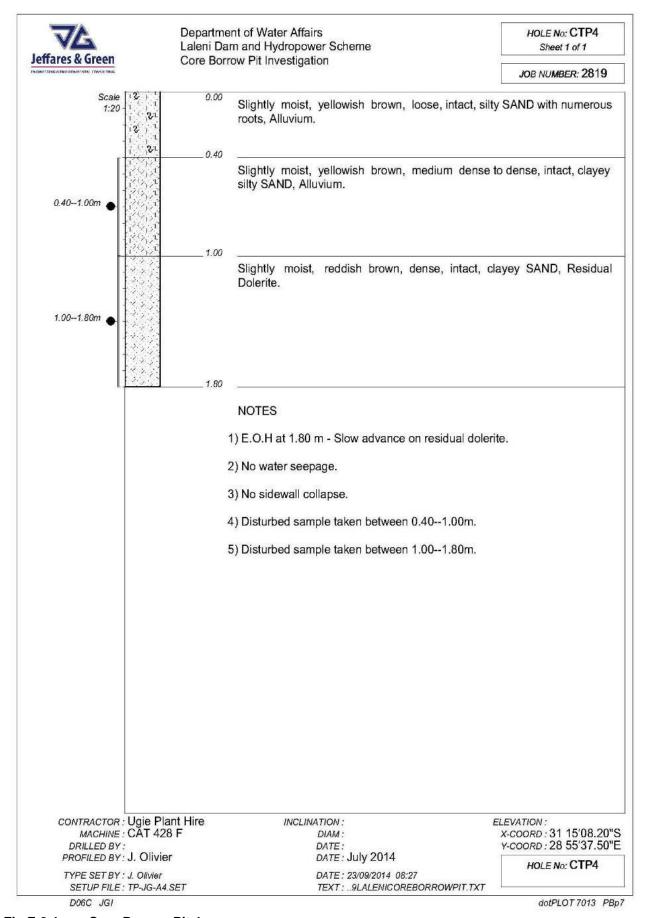


Fig F-2.4: Core Borrow Pit 4

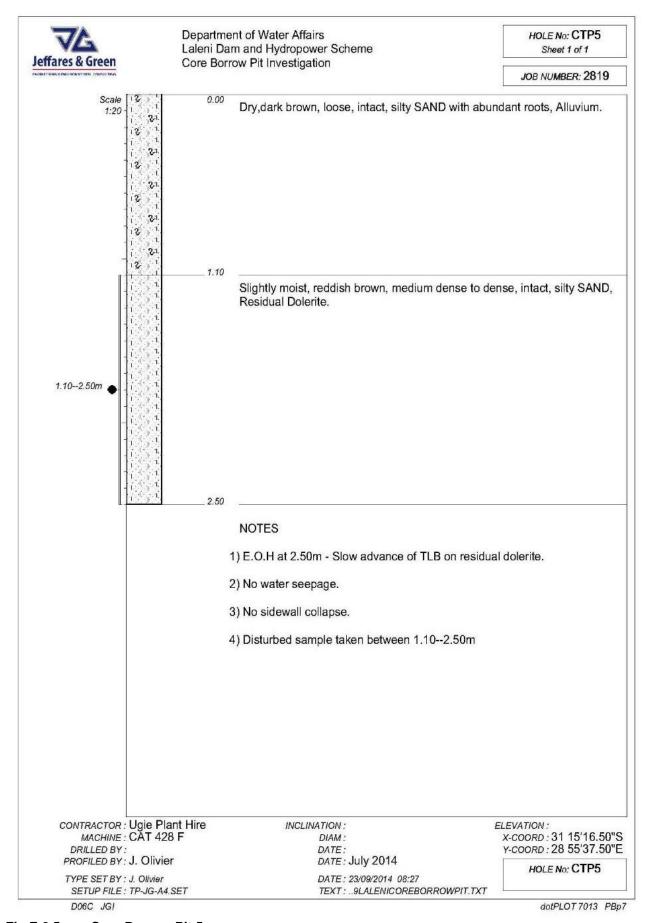


Fig F-2.5: Core Borrow Pit 5

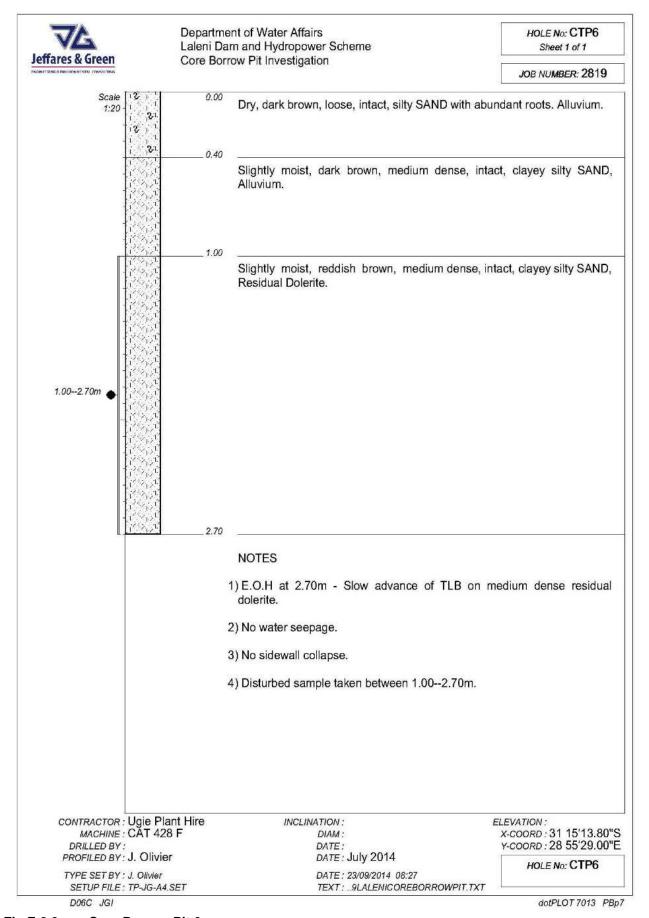


Fig F-2.6: Core Borrow Pit 6

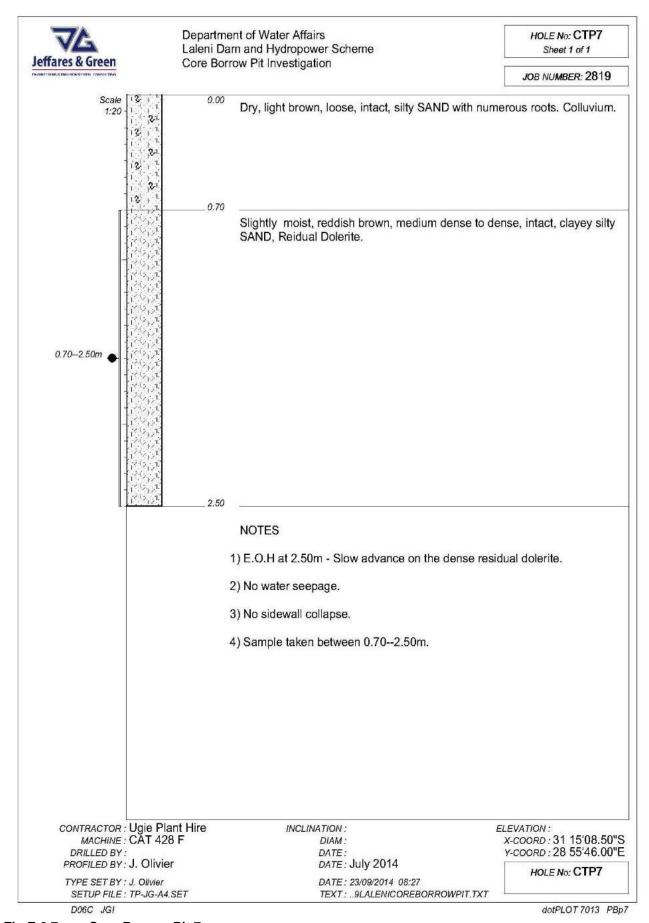


Fig F-2.7: Core Borrow Pit 7

F3:

SHELL BORROW PIT LOGS

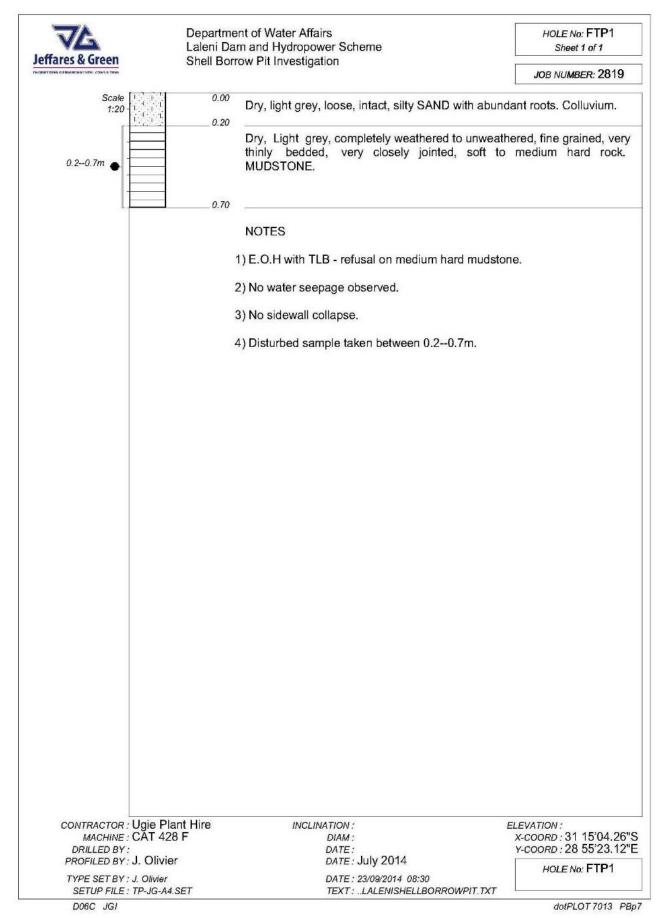


Fig F-3.1: Shell Borrow Pit 1

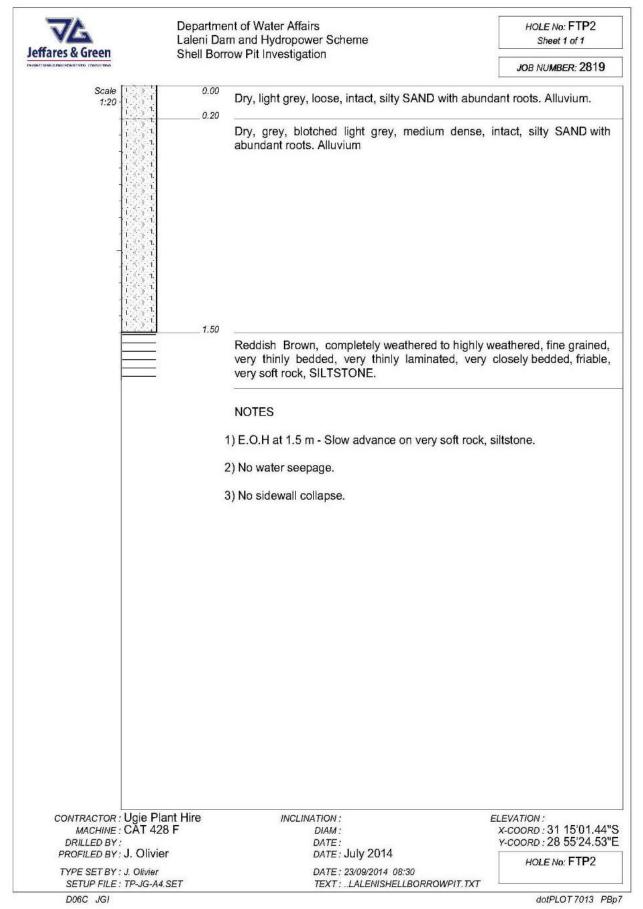


Fig F-3.2: Shell Borrow Pit 2

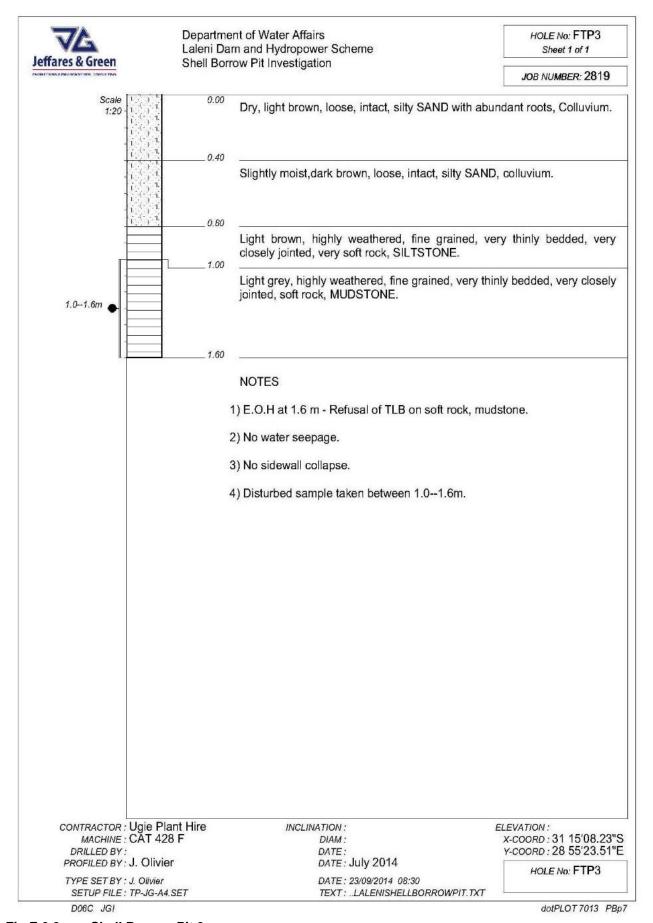


Fig F-3.3: Shell Borrow Pit 3

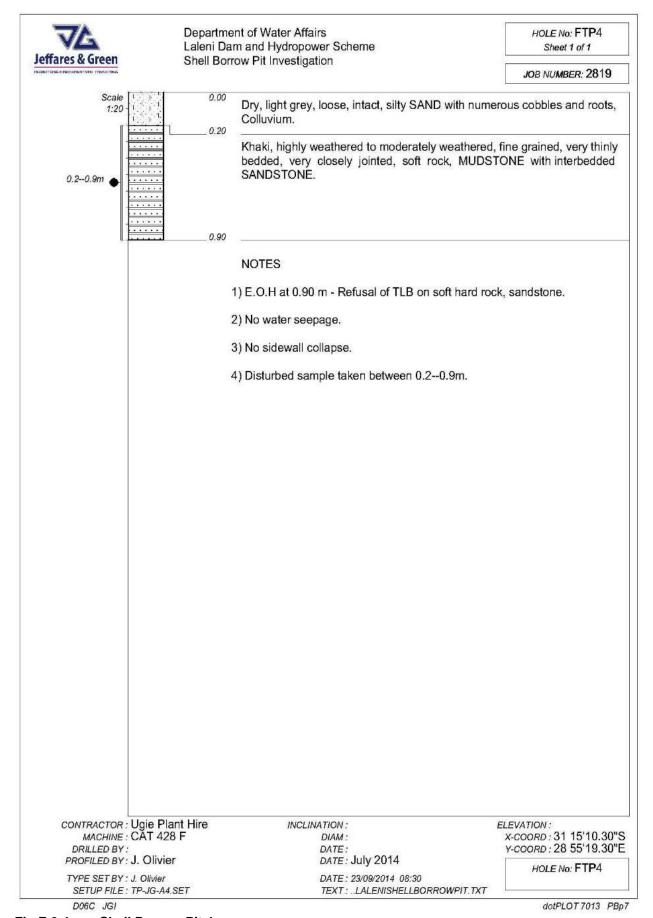


Fig F-3.4: Shell Borrow Pit 4

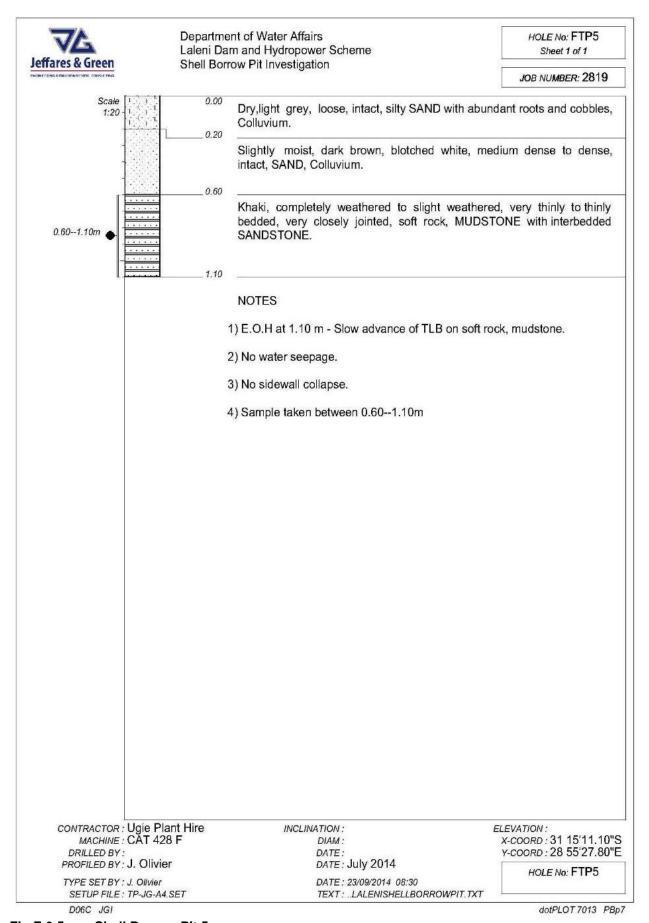


Fig F-3.5: Shell Borrow Pit 5

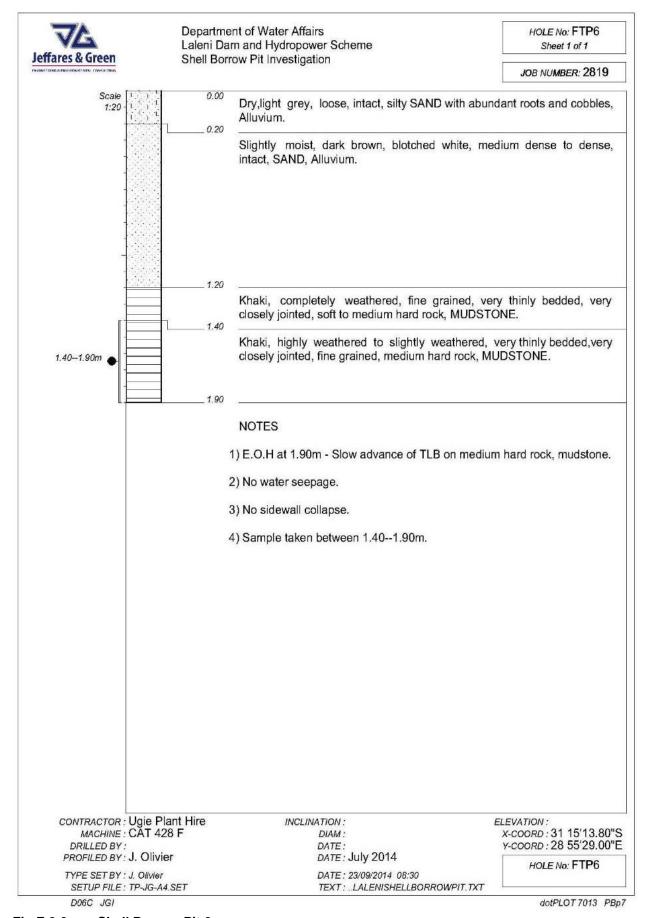


Fig F-3.6: Shell Borrow Pit 6

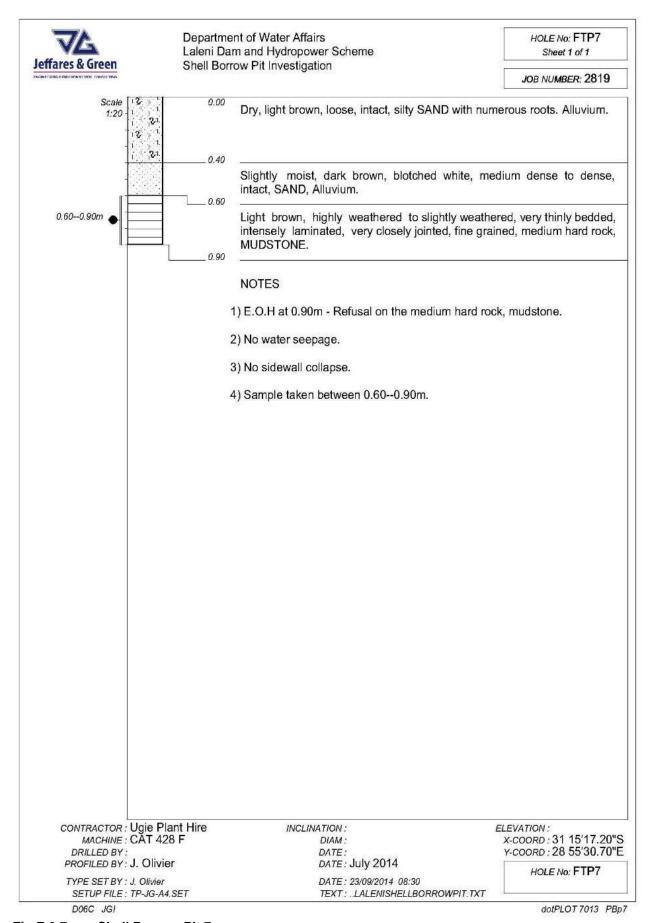


Fig F-3.7: Shell Borrow Pit 7

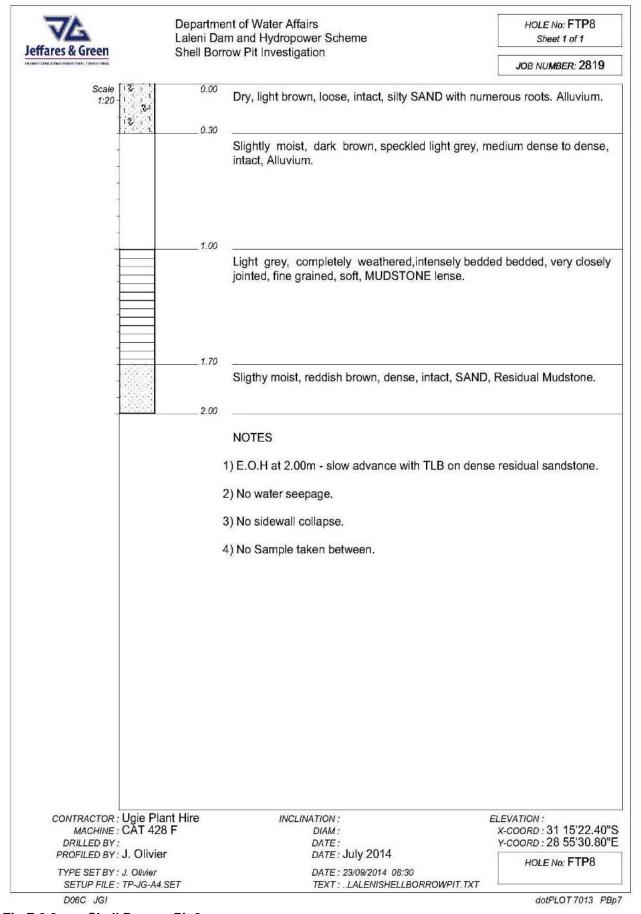


Fig F-3.8: Shell Borrow Pit 8

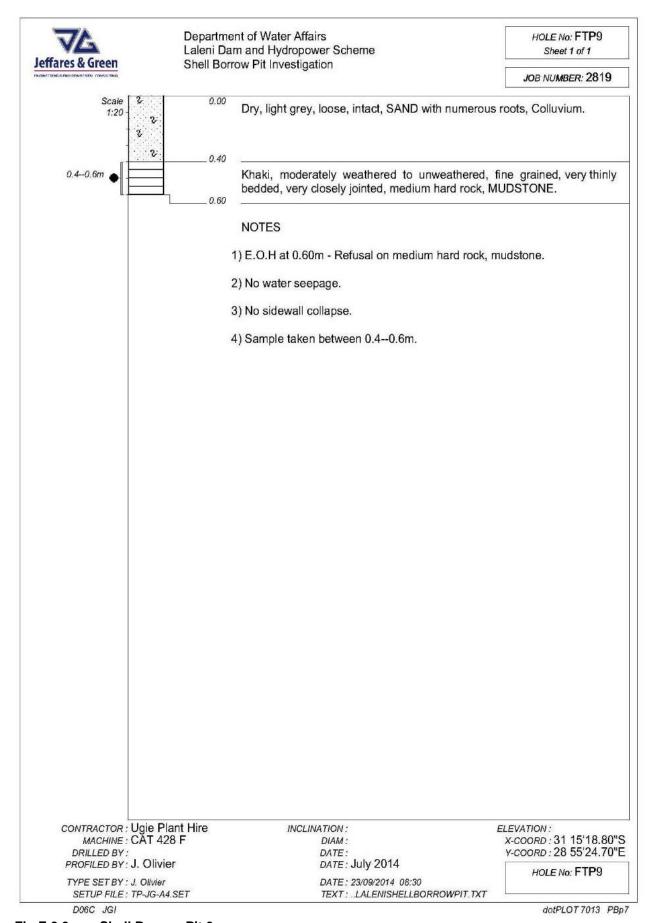


Fig F-3.9: Shell Borrow Pit 9

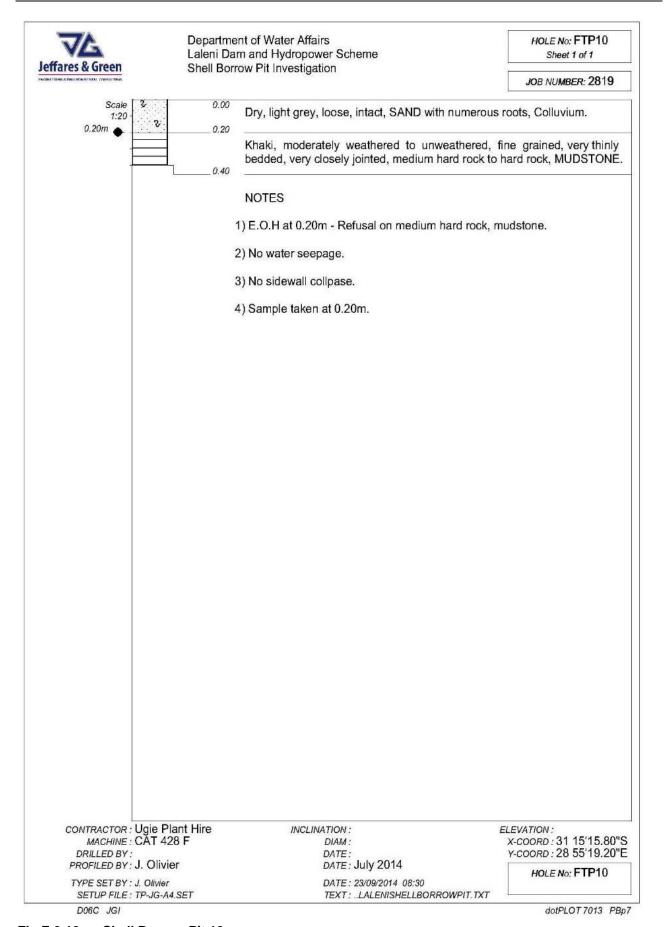


Fig F-3.10: Shell Borrow Pit 10

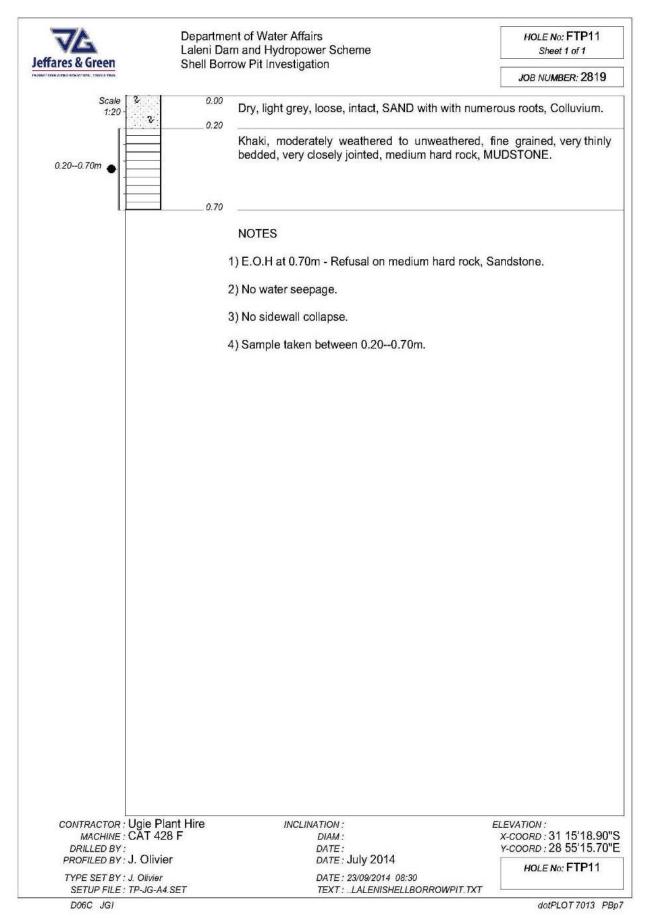


Fig F-3.11: Shell Borrow Pit 11

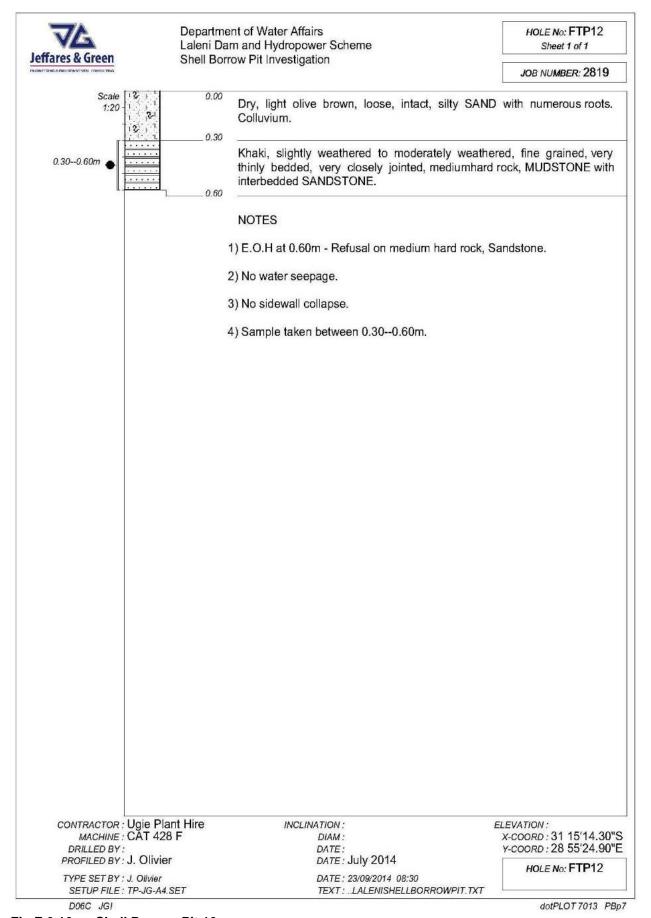


Fig F-3.12: Shell Borrow Pit 12

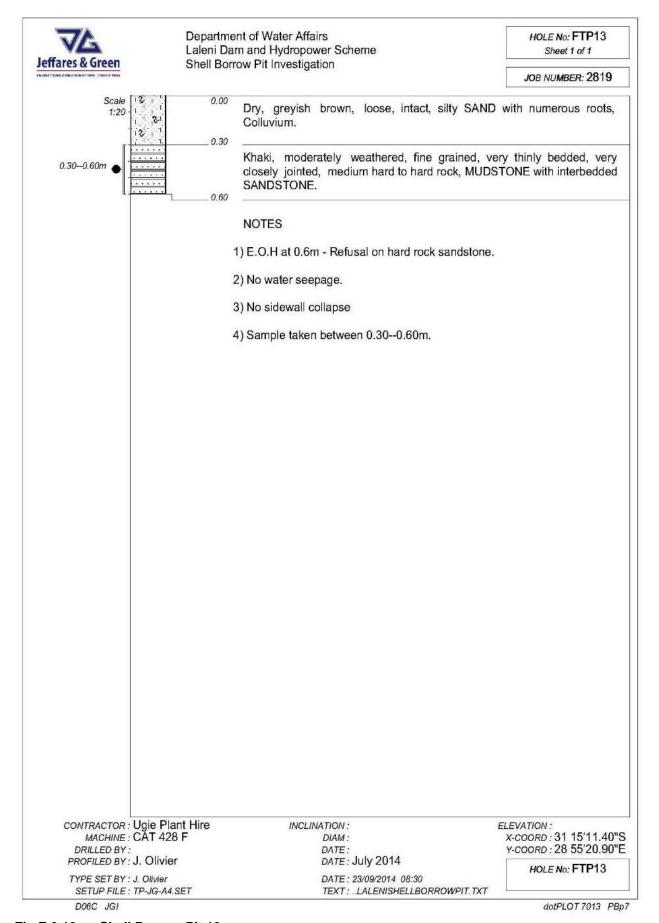


Fig F-3.13: Shell Borrow Pit 13

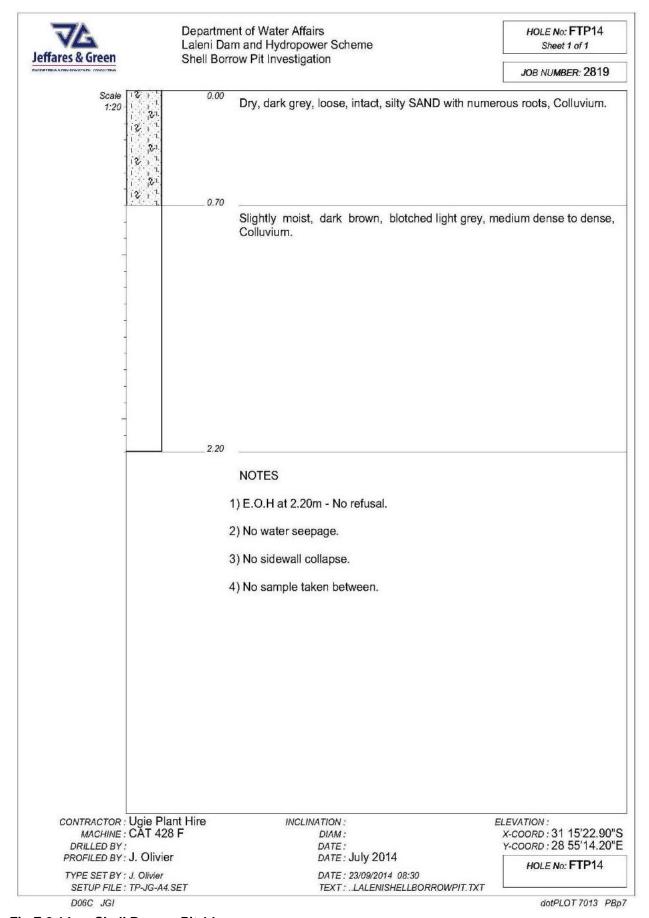


Fig F-3.14: Shell Borrow Pit 14

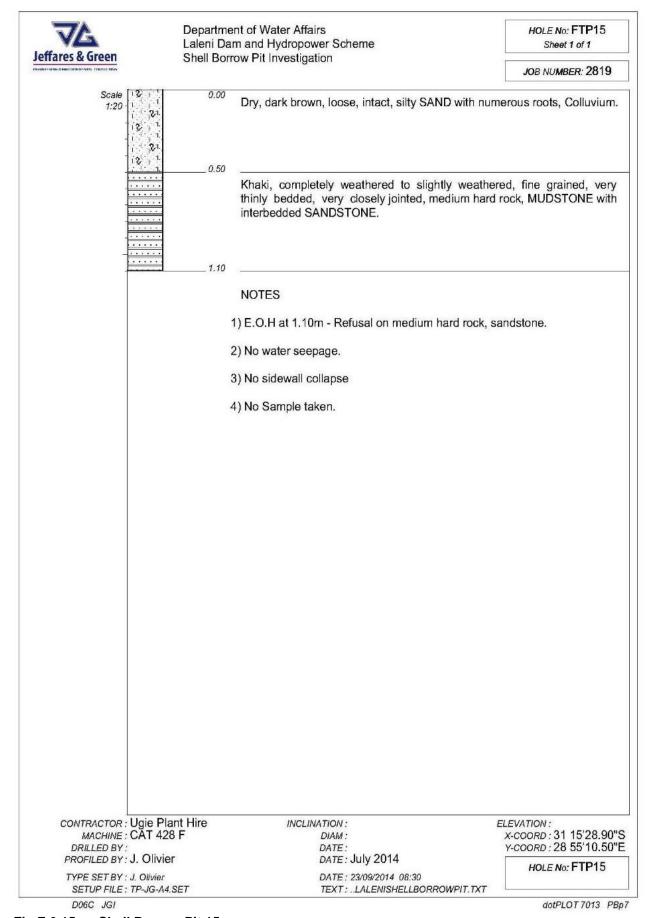


Fig F-3.15: Shell Borrow Pit 15